欢迎来到学术参考网
当前位置:发表论文>论文发表

阿司匹林论文模板

发布时间:2023-03-13 19:17

阿司匹林论文模板

化学是研究物质的性质、组成、结构、变化和应用的科学。自有人类以来就开始了对化学的探索,因为有了人类就有了对化学的需求。它与我们的生活息息相关,在我们的日常生活中无处不在。下面是我为大家收集关于健康生活与无处不在的化学论文模板,欢迎借鉴参考。

浅谈生活中无处不在的化学

前言:生活中到处都涉及化学,了解化学不仅仅帮我们提高生活质量,而且能提高我们对世界的认识,更好地保护人类的生存环境。

正文:

毫无疑问因为化学而有了很多物质上的创新。因为化学家们的实验工作,我们才有了塑料、玻璃、药物、火药和电子产品等。这些东西又是怎样研制成的呢化学家们先是提出问题再构成假设,假设是任何科学实验的基础,根据假设反复进行科学实验。我们日常生活中不同的烹饪牛排的 方法 和蒸馏上乘的威士忌的方法都是透过实验而得知。化学是我们日常常生活的一部分,不管我们意识到与否,化学渗透到生活的每一方面。烹饪技术高超的家庭主妇从某种好处上说就是一名化学家。怎样将食品中的化学成分调配好是一门艺术。烧烤完全是化学反应,你烧烤的食物好坏在于化学成分的调配。蔗糖受热熔化会转成焦糖。了解这一点,就能做出使人食欲顿开的食物。另一方面烧烤用的苏打和食物是化学在现实生活中应用的典范。我们懂得食用油和酱油会因为氧化反应而变质同时色彩发生变化因此我们能够观察色彩而辨别食用油和酱油是否安全食用。我们用特氟龙锅来油煎食物,用铁锅来做汤,这些全包含化学原理。我们都明白水和空气的基本成分,也明白生活中诸多用化学方法制成的产品如食盐,含氢和氯的酸性物质,还有蔗糖。了解这些能帮忙我们记住元素周期表上化学元素的缩写。这能帮忙我们解除生活中的遇到的许多复杂化学名称。了解物质之间

的阳性反应。能帮忙你处理日常事务,而了解物质间的阴性反应会挽救你的生命,阴性化学反应能造成伤害性的条件,如爆炸、烧伤和有害气体。

某些化合物放在一齐能消除异味。市场上很多产品就是利用这一化学原理来消除异昧的。在医药上,所有的药物都是透过化学反应制成的。还有采用将物质混合起化学反应来杀菌比药物治疗要有效的多,这也是在利用化学原理。很多软膏和消毒剂还有一些肥皂洗涤剂等都是利用这些化学混合物的作用制成的。另外医学上常说的胶化、胶质和悬胶这些术语都是来自化学。化妆品都内含化合物,脱毛剂之所以能脱毛是因为物质之间的化学反应。

化学反应能释放能量,由这一原理燃料发动机得以发明创造并工作。热传导或热传递是热学原理在现实生活的应用。如做饭时要点燃液态天然气带给热能。

我们明白我们呼吸时吸收的是氧气,将氧气与氮气和二氧化碳气体分开,人体需要的是氧气,所以当我们看到烟烟主要包含一氧化碳,而一氧化碳浓度较大的气体对人体有害,甚至会使人窒息而亡)或闻到臭味的东西时如硫化氢气体,我们会屏住呼吸或者捂住鼻子以防止异味气体进入我们的呼吸系统。我们的饮食完全是化学。我们的饮料和食物之间将有化学反应。唾液会感知到食物的酸甜苦辣。之后饮料和食物将和人体消化器官内的酶发生化学反应以获得卡路里,蛋白质、维他命或者是矿物质,这些都是人体的健康所必需的。了解这些我们就不会吃那些对我们的身体有害的东西。热的食物和饮料不能放

在塑料盘子和塑料杯子里。如果放了,塑料物质会溶进饮料和食物当中,而塑料物质对人体是有害的。.

我们在穿衣服时,看衣服的色彩就明白衣服是否发霉。我们的汗液基本上呈酸性,所以当汗液粘在衣服上如果不及时除掉,衣服会变黄。我们佩戴的饰品、穿的鞋同样也是这样。所有这些都包含化学原理。

总而言之,化学在我们身边。我们呼吸的空气,我们吃的食物,我们人体与物质的科学影响着我们的健康。了解化学就是在了解你身边的世界。了解得越多就越能健康的生活。

课程感想:接下来是我的一些关于学习本课程的感想:本课程与其他课程最大的不同点就是大部分课程都在实验室中进行。透过做各种各样的搞笑的实验,我不仅仅锻炼了自己的动手潜力,更是增加了对于学习化学的兴趣。原先化学与我们的生活是如此地接近,原先我们能够利用化学知识做出这么多东西来,这是我在上这门课之前所未曾想到的。尽管在这门课上我们做的实验仅仅是一些很简单很表面的实验,但也正是这些简单的实验才能激发对于化学兴趣,对于研究问题的用心性和探索潜力,这是这门课有别于其他地方的存在,也是最让我印象深刻的地方。

化学需要回归生活

在如今学子遍布的年代我不相信还有人不明白化学,有人把它当作一门课,有人把它当作一门科学,也有人认为它是一种艺术。从两百多年前它被正式确立以来,可谓发展迅速,然而这种迅速并不比数学、物理乃至其他自然科学快步多少,甚至于没有其他自然科学的进步就不会有化学的大发展。举例而言,没有量子理论的建立,就没有现代化学。当多少“砖家”还在高呼“社会离不开化学,让更多的人了解化学”之类高傲言论,人们对化学的兴趣反而减少了。社会离不开化学,但社会也同样离不开其他一切,不至于这些专家脑子里除了化学装不了其他。我难以想象一堆专家对着日常生活的吃喝拉撒去评论它们的组成、结构、性质乃至变化的画面。

化学是普通的,和其他千千万万学科知识一样,都是我们生活的一个组成部分,没有等阶之差,更不该被所谓的魔化。一个熟知化学的人会因为生活中的种种现象能被解释而欣慰,一个不了解化学的人也会因无需关注缘由,自由无虑开怀。何况一个熟悉计算机内部结构的未必使的好计算机,而一个玩的好计算机的人未必熟悉其内部构造。

诚然,化学的发展带给了人类日新月异的生活,小到日常生活随处用到的塑料袋,大到一个国家的石油化工,化学带给了人们前所未有的生活体验。然而带来这些的根本是人类对未知不断探求的结果。第一个吃螃蟹的人是可敬的,然而即使无人吃螃蟹,螃蟹也不会丧失它的美味。化学是人与自然之间的一扇门,这一扇门的有无并不影响自然的存在与否。我们透过这扇门了解自然,我们赞美这扇门,但自然的神奇并非有了这扇门才存在,何况了解自然并非这一道门。

现实中,太多的人关注这扇门的材质纹理,以致忘了门后的自然世界。以化学实验来说,众所周知,化学是实验的科学,化学学科建立之初,人们用实验验证未证实的理论或是发现未知的物质。然而,此刻提起实验人们想到的不是实验目的,而是高大上的实验室和实验设备,甚至是令人眼红的实验经费。为了什么做实验早已被忘得一干二净,仿佛只要有豪华的装置一切实验毫无疑问均可成功,既然一切实验都是成功的,什么目的再关注自然没有好处,连宇宙都能够按照人为意志演化了。

没有高大上的实验配置,实验无法成功,自然无需去做。我在一个地级市上

高中,校园以物资不足为由三年中学生只进三次实验室,一次参观,两次简单地摸摸瓶瓶罐罐,做个酸碱反应之类。至于其他校园,比可观之。

汉弗莱·戴维在十九世纪初用伏打电池发现了钾、钙、镁等金属,是化学发现史上发现元素最多的人。当时的实验条件可想而知,伏打电池作为电池界的老祖宗什么状况大家也很容易想象,如此恶劣的条件下戴维都能发现多种金属可见做实验与实验条件毫无关联。不幸的是太多校园以实验条件不行制约学生的实验操作潜力,连一些老师都以“校园实验室太简陋”为由避开实验课操作。

然而化学实验并没有什么高大上和不可触及,我们经常听到衣服脏了用汽油洗、用食盐洗之类都是化学实验,是生活中的化学实验,是抛弃了豪华外衣的化学实验。事实上,只要你想,随时都可进行实验,进行你所求目的,所解疑问的实验。

多少人从初中学到大学,应对一本比一本厚的化学书,没见到一个日常生活中能够做的实验。上百页的书,上百页的理论,一个又一个名词,一个又一个术语,就是不见一个能做的实验事实。甚至于一本四五百页的有机化学学完,还分不清手里拎的塑料袋到底是聚乙烯还是聚丙烯。偏偏这时一进教室,老师教你的是聚异戊二烯之类。

我不想说我们学了一堆不靠谱的理论,但我们确实学了一堆虚无理论。好比有人问老子何为道,老子回答说:“道可道,十分道。”那么到底什么是道呢?道可道,十分道!

化学是门伟大的科学,但它的基础是实用。多少人看不懂计算机理论书籍,但使用起计算机无比熟练;同样多少人看得懂化学理论,做起实验一个比一个生疏,甚至一个博士后能把实验室和自己一块炸了。计算机几十年发展迅速,因为每一个计算机行家都在实践操作。计算机行业黑客出了无数,写理论书的黑客没有几个;化学行业诺贝尔奖每年一两个,却连初中老师都出版教材。

化学教学需要脱离空无高大上的理论,回到基础的实用性上,至少,回归生活。能把一个学生教到分不清塑料袋是聚乙烯还是聚丙烯的学科,哪怕它是宇宙的终极理论也毫无用处。化学是生活的学科,教会学生天然气是甲烷不是一氧化碳比教会他碳纳米管是什么远要有用。

我在那里无意提一些生活中的化学知识,例如化妆品,酒水饮料,食物之类,

这些网上随处可寻。可就是这些网上随处可寻得知识在大多中学禁止学生上网的禁令下,书上也不教,以致一些到了大学便不再上化学课的学子一生都不明白。当然,生活中的化学并非酒水等能够概全,我们也需要明白一些理论知识,但是立足于可观事实之上的理论,不是你给我说什么链式反应之类,它是真的是假的又如何,我还能去找国家主席申请一个原子弹炸炸试试,就说为了验证链式反应?然后原子弹炸了我说链式反应是真的,万一没炸我说链式反应是假的,或者防止偶然状况,再申请一个继续炸?

我想大家都没有傻到这种地步。

当然,这并不是说高深理论毫无用处。人类是探索型生物,对一切未知都有着无比的好奇心。然而高楼平地起,没有扎实的地基在豪华的大厦也要倾倒。这也正是化学 教育 需要回归生活的好处。

浅谈化学与生活

关键词:化学;生活;人类

摘要:人类的生活大致可分为精神生活和物质生活两个方面,物质生活离不开物质,精神生活也离不开物质。由于化学是以物质的组成、结构、性质和应用为主要研究对象的一门科学,改造原有物质和制造新物质就成了化学的主要研究资料。本文将从:关注营养平衡、促进身心健康、生活中的材料、保护生存环境等四方面来介绍化学对人类生活的影响,进一步证明化学与人类社会密不可分的关系。

一、关注营养平衡

生命本身就是一种奇迹。只要走进大自然,无论是公园、农田、森林、草原还是崇山峻岭,江河湖海,我们都会发现有数不清的动物和植物。生命要为生存而感激太阳,同时也要感谢化学,感谢把能量转化为生命物质的化学过程。

1、糖

糖类是绿色植物光合作用的产物,对于人和大多数动物来说,属于最基本也是最廉价的能量来源。在我国居民的食物构成中,人们每一天摄取的热能中大约有75%来自糖类。糖类是由C、H、O三种元素组成的一类有机化合物,糖类也叫做碳水化合物。糖类中最重要也是最简单的糖是葡萄糖,它在自然界中分布十分广泛,存在于葡萄等带甜味的水果里。淀粉也属于糖类,主要存在于植物的种子或块根里,其中谷类含淀粉较多。例如,大米中淀粉约80%,小麦含淀粉约70%,马铃薯含淀粉约20%。淀粉虽属于糖类,但没有甜味,需要进一步化学反应转成葡萄糖才能够被人吸收。纤维素也是糖类,它不能被人类吸收,但也有重要作用,例如,它能够刺激人体消化。

2、蛋白质

蛋白质是生命的基础,没有蛋白质就没有生命。肌肉,血清,血红蛋白,毛发,指甲等都是有不同的蛋白质构成的,一切重要的生命现象和生理机能都与蛋白质密切相关。大学生每一天需要摄入80~90g蛋白质,才能满足需要,保证身体健康。蛋白质会在人体内被水解成氨基酸,然后被人体吸收。不同的食物中内含的蛋白质数量及成分不同,营养价值也不同,合理搭配各种食物,能够使氨基酸相互补充,提高膳食中蛋白质的吸收与利用。

3、油脂

油脂的主要成分是高级脂肪酸与甘油所生成的酯,叫做甘油三脂。在人体中,油脂主要在小肠中被消化吸收,实质上是脂类被酶催化水解生成高级脂肪酸和甘油,脂肪酸在人体中主要有以下几种功能:(1)供给人体热量;(2)储存能量;(3)合成磷脂、固醇等物质;(4)参与人的生理过程如促进发育等。

4、维生素和微量元素

在20世纪初期,科学家发现,如果用只含糖类,脂肪,蛋白质和水喂养,实验动物不能存活。但加入微量牛奶后,实验动物就能正常生长了,科学家经过反复论证,实验,认为正常膳食中还务必有微量维生素,矿物质等。

二、促进身心健康

“生命在于运动”,这是人们从实际生活中 总结 出的一条真理。合理选取饮食,正确使用药物和培养良好的生活习惯是保障身心健康的重要方面,而这些都离不开化学。

1、合理选取饮食

1)水的重要性

人们每一天都要补充必须量的水分,水是人体的重要组成成分,是人体含量最多的一种物质,约占人体体重的三分之二。人体的水需要不断补充,没人每一天要补充2.5~4L水。能够说,没有水就没有生命。水是一种很好的溶剂。食物中许多物质如糖等要溶于水才能被吸收。水溶液在血管细胞间川流不息,把氧气和营养物质运送到组织细胞,又把代谢废物送到体外。此外,水还有调节体温的作用。

2)食物的酸碱性

在日常生活中,食物的选取与其酸碱性关系很大。食物的酸碱性是按食物在体内代谢最终产物的性质来分类的,有重要的生理好处。因为人体正常的生理过程对所涉及的体液都有较严格的酸碱性要求。例如在正常状况下,人体的pH总持续弱碱性范围(7.35-7.45),否则,就会出现酸中毒或碱中毒。由于人体具有自动缓冲系统,能使血液的pH总持续在正常范围内,到达生理平衡。但这种调控潜力是有限的,还需要透过选取酸性食物或碱性食物来加以控制。

3)食品添加剂

为了改善食物的色、香、味或补充食品在加工过程中失去的营养成分,以及防止食物变质等,我们经常会在食品中加入一些天然的或化学合成的物质即食品添加剂。食品添加剂的品种有许多,主要包括这几种:着色剂、调味剂、防腐剂、营养强化剂等。随着食品工业的发展,食品添加剂已经成为人类生活中不可缺少的物质。但不合理的使用食品添加剂会损害人体健康。

2、正确选取药物

统计数据证明:我国居民的平均估计寿命由1949年时的35岁,提高到2000年的70.8岁;传染病在死亡病因中所占的比率由35%降到5%。其中主要原因是普遍应用了各种新型药物。化学对此做出了重大贡献。

1)人工合成药物

主要包括解热镇痛药、抗生素、抗酸药等等。解热镇痛药如阿司匹林是人们熟知的感冒药,具有镇痛作用。是第一个重要的人工合成药物。阿司匹林的应用开辟了医药化工的全新领域,是至今销量最大的药物。青霉素是最重要的抗生素,即消炎药。青霉素有阻止多种细菌生长的优异功能。抗酸药能够治疗胃痛,能中和胃里过多的胃酸,缓解胃部不适。

2)天然药物

天然药物取自植物、动物和矿物,来源丰富。化学对中药有重要好处。许多中草药的有效成分已经分离。例如具有止咳平喘功能的麻黄碱是从中药麻黄碱中提取的生物碱。

三、生活中的材料

材料是人类赖以生存和发展的重要物质基础。没有半导体材料,就不可能有此刻的计算机技术;没有耐高温、高强度的特殊结构材料,就不可能有这天的宇航技术;没有光导纤维,就不可能有现代的光通信;没有有机高分子材料,人类的生活就不可能像这天这样丰富多彩。化学是材料科学发展的基础。

1、合金

合金是由两种或两种以上的金属(或金属与费金属)熔合而成的具有金属特性的物质。合金与各成分金属相比,具有许多优良的物理、化学或机械的特性。因此,尽管目前已经制得的纯金属只有80多种,但由这些纯金属制得的合金已达数千种,大大拓展了金属材料的适用范围和价值。生活中常用的合金有铁合金、铝合金和铜合金等。

2、玻璃、陶瓷和水泥材料

一般的住宅玻璃是普通玻璃,制造普通玻璃的主要原料是纯碱,石灰石和石英。制造陶瓷的主要原料是粘土。陶瓷具有抗氧化、抗酸碱腐蚀、耐高温、绝缘、易成型等优点。常用的硅酸盐水泥的原料主要是石灰石和粘土。

3、金属的腐蚀和防护

金属的腐蚀现象十分普遍。例如,钢铁生锈,铜器表面生成铜绿等等。腐蚀可使金属的机械性能、色泽和外形等方面发生变化,严重时可使机器设备、仪器和仪表等报废。所以防止金属腐蚀也是亟待解决的问题。金属的腐蚀主要包括电化学腐蚀及化学腐蚀,因此要从这两方面思考来进行金属的防护:金属腐蚀的本质是金属失去电子转成阳离子的过程,越活泼的金属越易被腐蚀,因此想要保护金属,能够在要保护的金属上连接一种比该金属更活泼的金属。此外也能够在金属表面涂漆,烤蓝,加氧化膜,镀金属等等,需要根据不同的状况选取不同的防护方式。

4、塑料、纤维和橡胶材料

合成材料的品种很多,塑料,合成纤维和合成橡胶就是常说的三大合成材料。塑料的品种很多,用途各不相同,主要有:聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、脲醛塑料等等。纤维和橡胶是生活中常用的材料,合成纤维具有优良的性能,如强度高、弹性好等等。而橡胶是制造汽车、飞机和医疗器械等所必需的材料,是重要的战略物资。

四、保护生存环境

20世纪以来,随着科学技术的迅猛发展,人类创造了空前丰富的物质财富。而与此同时,自然资源的过度开发和消耗,污染物的超多排放,导致全球性的资源短缺,环境污染和生态恶化。保护环境,保护地球已成为人类的共同的呼声。

环境问题的最终解决要靠科技进步。在这个过程中,化学是大有可为的。改善大气质量,污水处理和实现垃圾的资源化等都要依靠化学方法,要依靠化学等科学的发展。

1、改善大气质量

大气的污染危害是多方面的,它即危害人体健康,又影响动植物的生长,严重时会影响地球的气候。如构成酸雨、是全球气候变暖和破坏臭氧层等。为了改善大气质量,我们应当减少煤等化石燃料燃烧产生的污染、减少汽车等机动车尾气污染,减少室内空气污染等。lwfree

2、爱护水资源

如前文介绍。水是重要的资源,同时也是宝贵的自然资源。随着工农业生产的迅速发展和人口的急剧增长,水资源日趋紧张。同时,由于废物排放,污染了水资源,加剧了水资源的短缺。水体污染主要包括:重金属污染、植物营养物质污染等等。为改善水质,最根本的 措施 是控制工业废水和生活污水的排放,例如:重复利用废水,回收废水中的有效成分,减少废水的排放量;采用革新工艺,减低废水中的有用成分等。

3、垃圾资源化

垃圾处理要遵循无害化,减量化和资源化的原则,目前常用的方法有卫生填埋,堆肥和焚烧。

五、结语

综上所述,我们能够初步得出化学在当今人类追求高品质的现代化生活中,在各科学追求深入发展和进步的路途中都起着重大的作用。化学世界多姿多彩,在学习和生活实践中多掌握一些化学常识总是能够为我们的生活增加一些亮丽的色彩与更多的便捷。但也要注意化学的使用规则,按照必须的规范要求进行操作。总之,在我们身边化学无处不在,生活离不开化学,化学源于生活。

相关 文章 :

1. 化学与健康生活论文3篇

2. 毕业论文

3. 化学开题报告范文

4. 3000字的论文格式模板

5. 2500字论文格式模板怎样的

急!求一篇生物制药专业的毕业论文 课程有微生物 药物制剂 药理学 有机化学 无机化学 分析化学等等!谢谢

  阿司匹林抵抗与基因多态性的研究进展
  【关键词】 阿司匹林抵抗;基因多态性

  阿司匹林作为一种有效的抗血小板聚集药物广泛应用于心脑血管疾病的防治,临床观察显示阿司匹林能减少约25%的心脑血管疾病复发。然而,并不是所有患者都能从阿司匹林治疗中获益,有研究显示0.4%~83.3%个体对阿司匹林的抗血小板作用不敏感,即存在阿司匹林抵抗现象(aspirin resistance,AR) [1]。阿司匹林抵抗的确切机制不明,遗传可能为其重要因素,本文将近年AR与基因多态性方面的研究作如下综述。

  1 阿司匹林抵抗

  1.1 阿司匹林抵抗的定义 Bhatt[2]等将阿司匹林抵抗分为临床性及生化性。临床性为患者口服阿司匹林后仍发生缺血性血管疾病;生化性为口服阿司匹林后,未能改变血小板功能试验结果。

  1.2 阿司匹林抵抗的分型 有研究[3]将生化性阿司匹林抵抗分为3型:(1)Ⅰ型阿司匹林抵抗(药动学型):口服同样剂量的阿司匹林,体内血栓素(TX)合成和胶原诱导血小板聚集均未被抑制。而体外富血小板血浆中加入100 μmol/L阿司匹林后可被抑制,提示使用小剂量阿司匹林有相当大的药动学差异。(2)Ⅱ型阿司匹林抵抗(药效学型):无论体内及体外,口服阿司匹林后,TX合成和胶原诱导血小板聚集均未被抑制,提示该型阿司匹林抵抗的机制与环氧化酶(COX)的遗传多态性有关。(3)Ⅲ型阿司匹林抵抗(假性阿司匹林抵抗):口服阿司匹林后能抑制TX合成,但不能抑制胶原诱导的血小板聚集。该型患者之所以被冠以“假性抵抗”,因为阿司匹林已抑制了TX合成,而不能抑制其他物质如胶原诱导的血小板聚集。

  2 阿司匹林抵抗机制

  AR发生的具体机制尚不清楚,可能与药物剂量不足[4],环氧化酶1(COX1)及血小板糖蛋白(GP)的基因多态性,胶原,吸烟,血脂异常等多种因素有关。血小板活化路径可由血栓素A2(thromboxaneA2,TXA2)、二磷酸腺苷(adenosine diphosphate,ADP) 、胶原、凝血酶和糖蛋白(glycoprotein,GP)Ⅱb/Ⅲa 受体等诱导,而阿司匹林仅能有效地阻断血栓素A2途径。目前,对于血小板活化路径及基因多态性与阿司匹林抵抗的关系研究主要集中在以下几个方面[56]:(1)血栓素激活途径中编码环氧合酶1 (cycloxygenase1 ,COX1) 的基因多态性。(2)GPⅡb/Ⅲa激活途径中编码血小板膜GPⅢa的血小板抗原1/血小板抗原2 (platelet antigen1/platelet antigen2,PLA1/PLA2)多态性。(3)胶原激活途径中编码血小板膜GPⅠa/GPⅡa的807C/T和873G/A多态性。(4)5二磷酸腺苷受体P2Y1的基因多态性。这些多态性位点有可能影响阿司匹林的抗血小板作用。现从基因水平分析阿司匹林抵抗的机制。

  2.1 环氧合酶基因多态性 COX是前列腺素合成过程中的重要限速酶,它有两种同工酶:COX1和COX2。COX1是花生四烯酸转换为前列腺素G/H途径中的第一个酶,其有两种酶活性,一种环氧化酶活性催化前列腺素G的生成,一种氢过氧化物酶(HOX)活性减少前列腺素G,生成前列腺素H,前列腺素H更进一步被COX催化成为前列腺素和血栓素[7]。阿司匹林抗血小板作用机制主要是使COX1丝氨酸530不可逆的乙酰化,从而使该酶失活,阻断了TXA2的形成。目前已发现多个COX基因多态性位点[8],不同COX的单核苷酸多态性(single nucleotide polymorphisms,SNPs)可影响COX的蛋白结构或构象,使其对阿司匹林抑制作用的敏感性极不均一,构成一些病人AR的结构基础。

  Maree等[9]将144位冠心病患者按COX1单核苷酸多态性分为五组[A842G,C22T(R8W),G128A(Q41Q),C644A(G213G) 和C714A(L237M)],均给予阿司匹林口服,发现A842G与C50T完全连锁不平衡。携带含有突变体842G等位基因的患者与野生型A842相比,花生四烯酸诱导的血小板激活和血清血栓烷B2 (TXB2 ,TXA2 的下游产物)产生更明显,提示携带突变体842G等位基因的患者对阿司匹林治疗较不敏感。表明COX1的遗传变异性可以影响花生四烯酸诱导的血小板聚集和血栓形成,病人对阿司匹林的反应部分决定于COX1的基因型。GonzalezConejero等[10]的研究则显示COX1 50T等位基因可能与阿司匹林抵抗有关。

  2.2 血小板糖蛋白(GP)Ⅱb/Ⅲa基因多态性 血小板糖蛋白GPⅡb/Ⅲa是细胞黏附受体整合素家族中的一员,含有纤维蛋白、纤维连接蛋白、von willbrand factor(vWF)等黏附蛋白的特异结合位点,参与血小板黏附和聚集。AR可能和血小板膜GPⅡb/Ⅲa受体复合物的多态性有关,GPⅡb/Ⅲa受体是血小板活化的最后共同通路。编码GPⅡb/Ⅲa的基因具有高度的多态性。GPⅡb/Ⅲa基因(包括编码GPⅡb和GPⅢa的基因) 突变、缺失或插入导致表型改变,进而引起血小板功能改变。迄今已发现C157T、A1163C、A1553G、T1565C等多个GPⅢa多态性位点,较为常见的是外显子2第1565位氨基酸的突变,即T1565C(Leu33Pro) ,编码Leo的位点称为PLA1(HPA1a),编码Pro的位点称为PLA2 (HPA1b)。关于GPⅡb基因多态性的研究较少,主要有GPⅡbMax/Max +(G2603A,V837M),HPA3a/3b(T2622G,Ile843Ser) ,GPⅡbG1063A(Glu324Lys) 等多态现象,其中研究最为广泛和深入的是GPⅡb残基843位Ile/Ser的变异,它与人类血小板抗原3 (HPA3) 相关。

  大量证据表明,GP受体多态性是动脉血栓形成的遗传危险因素,它能造成黏附受体成分的表达、功能和免疫遗传学的多样性。血小板激动剂(如TXA2)通过细胞内信号激活GPⅡb/Ⅲa受体,介导纤维蛋白原及其受体结合,然后促进血小板聚集。阿司匹林通过干扰COX非依赖性细胞内信号转导并使GPⅡb和GPⅢa分子乙酰化来抑制GPⅡb/Ⅲa的活化。尽管还未完全弄清,但目前所知的COX非依赖性信号转导途径可能包括跨膜蛋白受体、磷脂酶、Ca2 +释放、腺苷酸环化酶、鸟苷酸环化酶和蛋白激酶C等。某些弱的激动剂(如ADP、肾上腺素和胶原蛋白)导致的GPⅡb /Ⅲa激活可被阿司匹林部分抑制。在PLA2基因型存在时,抗血小板作用可以因这种替代途径减少而降低。

  Agnieszka Slowik等[11]研究发现PLA2等位基因是男性患者大血管病变所致卒中独立的危险因素。该研究分别选取92例大血管病变所致卒中患者及184例对照者,103例小血管病变所致卒中患者及206例对照者,182例心因性卒中患者及182例对照者。结果显示小血管病变及心因性卒中患者与对照者相比,PLA2等位基因出现的频率相似,无统计学意义;而大血管病变所致卒中的男性患者PLA2出现频率高(39.7% vs 23.0%;P=0.003 ,OR=2.51;CI为1.21~5.20)。Grove等[12]检测了1191例健康人和1019例冠心病患者的PLA2频率,在这些患者中529例以前有过心肌梗死史。结果健康人中28%为PLA2基因型,28%的冠心病患者(除外心肌梗死患者)为PLA2基因型,35%的心肌梗死患者为PLA2阳性。健康对照与心肌梗死患者之间PLA2基因频率有统计学差异。因此,他们认为斯堪的纳维亚人PLA2基因型与心肌梗死而不是冠心病的危险增加有关。Szczeklik A研究的结果提示与PLA1相比,PLA2等位基因更倾向于促进血栓的形成从而参与了阿司匹林抵抗的发生。Papp E等[13]研究也发现,阿司匹林抵抗患者中PLA2等位基因出现的频率要明显高于那些对阿司匹林有良好反应的受试者,而且该研究中所有PLA2/A2 基因型患者对阿司匹林的抗血小板反应均不良。这就提示PLA2等位基因可能与阿司匹林疗法反应的不充分、不敏感相关。然而,Macchi等[14]的研究发现PLA1等位基因更容易对小剂量阿司匹林治疗发生抵抗。

  2.3 血小板糖蛋白GPⅠa/Ⅱa受体基因多态性 GPⅠa/Ⅱa (整合素α2β1 )位于连接血小板与胶原纤维(Ⅰ、Ⅱ型)或非胶原纤维( Ⅲ、Ⅳ型)的二价阳离子键的中间。在正常个体与那些先天遗传存在α2基因的四个等位基因的个体中,其血小板表面表达的GPIa/Ⅱa是不同的。GPIa基因位于第5号染色体上,对于这一基因的一些相关研究,揭示它的一些有症状或无症状的多态现象,以及由此引起的受体的结构和功能的改变,以及血小板表面的GPⅠa/Ⅱa受体多拷贝间的差异。α2GPIa多态性—807CT(phe224)和873GA(Thr246)已被证实与血小板表面受体不同的表达有关。基因型807TT(873AA)与受体的高密度表达有关,而807CC(873GG)则与低密度表达有关。杂合子则与中间受体表达的水平有关。第三种多态性是由于1648位点上G到A被替换所致,这同时也引起505位点(Br系统)上Glu/Lys被替换。同时,GPIa807C/T与Glu505 lys之间存在基因相关,且Br的多态性与位于核苷酸环化酶837(CT)上的一个稀有多态性相连结,携带等位基因I(807T/873T/873A /Brb)者表现出高水平的GPⅠa/Ⅱa,而携带等位基因Ⅱ(807C /837T/873G/Brb)和Ⅲ(807C/837C/873G/Bra)者则表现出低水平的血小板整合素。胶原是一种重要的血小板聚集诱导剂,血小板胶原受体血小板膜糖蛋白Ⅰa/Ⅱa密度增加可能是血栓形成的潜在危险因素和阿司匹林抵抗的原因,血小板膜糖蛋白Ⅰa/Ⅱa基因多态性可以增加血小板膜胶原受体的密度[15],从而降低阿司匹林疗效。

  2.4 ADP受体P2Y1基因的变化 ADP是血小板聚集的重要介质,ADP的调节作用是通过与血小板表面G蛋白偶联P2Y受体相连接而实现的。迄今为止已有8种P2Y受体亚型被克隆,对P2Y1和P2Y12的研究较清楚。Gαq偶联P2Y1受体与ADP结合,使钙离子释放,改变血小板形状,使血小板聚集。另一种主要的受体P2Y12与G蛋白Gi偶联,抑制腺苷酸环化酶,活化磷酸肌酸激酶3,活化GPⅡb/Ⅲa受体。任何一个受体的抑制均会引起血小板聚集的显著减少。

  ADP通过P2Y1和P2Y12受体刺激血小板的激活和聚集,这些受体的突变与止血异常有关,任何一个受体的抑制均会引起血小板聚集的显著减少。阿司匹林以协同方式减少这些情况的发生[16]。P2Y12和阿司匹林的复合拮抗作用已在临床上被证实可显著减少血栓事件的发生[17]。因此,ADP受体P2Y1基因的相应功能变化能够改变ADP的信号功能,并且能降低对阿司匹林(包括P2Y12抑制剂,如噻氯匹啶和氯吡格雷)的反应性,导致血栓前状态的产生和对阿司匹林的反应性降低。

  Fontana等[18]在98名健康研究对象中发现了P2Y12受体5种多态性,其中4种是完全连锁不平衡。这导致两种单倍体产生,H1 (86%)和H2 (14% ) 。携带H2单倍体的受试者使用较低浓度的ADP (2 μm) ,血小板聚集增多。纯合子H1 (H1 /H1)平均聚集率为34. 7% (n= 74) ,有一个H2等位基因(H1 /H2,n= 21)聚集率为67. 9% ,在有2个H2等位基因(H2 /H2,n=3)聚集率高达82. 5%。这提示P2Y12多态性在阿司匹林抵抗中可能起作用。近来发现P2Y1 受体A1622G多态性与血小板对ADP反应不同相关。携带少见的G等位基因对ADP反应更强。Jefferson等[19]在332例男性有心肌梗死史的患者中研究发现阿司匹林抵抗患者与P2Y1基因C893T多态性密切相关。携带杂合子C893T等位基因患者与携带常见纯合子C893等位基因者相比阿司匹林抵抗率高出3倍,机制尚不清楚。

  以上综述了近年来关于基因多态性与阿司匹林抵抗关系的研究结果。由于没有国际公认的对阿司匹林抵抗的定义,多数研究样本量较小,研究结果间还存在很多矛盾,迄今为止遗传对阿司匹林抵抗的作用并不确切。所以仍需继续开展大规模和不同种族人群中的前瞻性研究来证实这些基因多态性与AR有关。

  【参考文献】
  [1] Lordkipanidze M,Pharand C, Palisaitis DA, et al. Aspirin resistance:truth or dare[J].Pharmacol Ther,2006,112:733743.

  [2] Bhatt D, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy[J].Nature Rev,2003,2:1528.

  [3] WeberA A, Przytulski B, Schanz A, et al. Towards a definition of aspirin resistance: a typological approach[J]. Platelets,2002,13:3740.

  [4] Lee PY, Chen WH, Ng W, et al. Lowdose aspirin increases aspirin resistance in patients with coronary artery disease[J].Am J Med,2005,118:723727.

  [5] Zczeklik A , Musia J , Undas A , et al. Aspirin resistance [J].J ThrombHaemost,2005,3 : 16551662.

  [6] Horiuchi advance in antiplatelet therapy: the mechanisms, evidence and approach to the problems [J]. Ann Med,2006,38 : 162172.

  [7] CambriaKiely JA, Gandhi PJ. Possible mechanisms of aspirin resistance [J]. J Thromb Thrombol,2002,13:4956.

  [8] Ulrich CM, Bigler J, Sibert J, et al. Cyclooxygenase 1 (COX1) polymorphisms in AfricanAmerican and Caucasian populations[J].Hum Mutat,2002,5:409410.

  [9] Maree AO, Curtin RJ , Chubb A, et al. Cyclooxygenase1 hap lotype modulates platelet response to aspirin[J]. J Thromb Haemost,2005,3: 2 3402 345.

  [10] GonzalezConejero R, Rivera J, Corral J, et al. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure [J] . Stroke,2005,36 : 276280.

  [11] Agnieszka Slowik, Tomasz Dziedzic, et al. A2 alelle of gp3a gene is a risk factor for strok caused by largevessele disease in males[J]. Stroke,2004,35:1 5891 593.

  [12] Grove EL , Orntoft TF ,Lassen JF , et al . The platelet polymorphism PLA2 is a genetic risk factor for myocardial infarction [J] . J Intern Med,2004 ,255 :637644.

  [13] Papp E, Havasi V, Bene J, et al. Glycoprotein 3A gene (PlA) polymorphism and aspirin resistance: is there any correlation[J].Ann Pharmacother,2005,39:1 0131 018.

  [14] Macchi L, Christiaens L, Brabant S, et al. Resistance in vitro to low dose aspirin is associated with platelet PlA1 (GP 3a) polymorphism but not with C807T (GP 1a/4a) and C5T Kozak (GP 1ba) polymorphisms[J].J Am Coll Cardiol,2003,42:1 1151 119.

  [15] Kunicki TJ, Orchekowski R, Annis D,et al. Variability of integrin α2β1 activity on human platelets[J].Blood,1993,82: 2 6932 703.

  [16] Andre P, LaRocca T, Delaney SM, et al. Anticoagulants ( thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis [J].Circulation,2003,108: 2 6972 703.

  [17] Steinhubl SR, Berger PB, Mann JT , et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial[J]. JAMA,2002,288: 2 4112 420.

  [18] Fontana P,DupontA, Gandrille S, et al. Adenosine diphosphateinduced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects[J].Circulation,2003,108: 989995.

  [19] Jefferson BK, Foster JH,McCarthy JJ , et al. Aspirin resistance and a single gene[J]. Am J Cardiol,2005,95: 805808.

标准的中药学毕业论文怎么写

论文欠“阿司匹林”的发现与提取两方面的资料,谁能提供?

  ■中文名称:阿斯匹林(解热镇痛药)阿司匹林(退热药)
  ■中文别名:醋柳酸、乙酰水杨酸、巴米尔、力爽、塞宁、东青等
  ■英文名称:aspirin
  ■英文别名:Acenterine、Acetard、Acetophen、Acetylsalicylic Acid、Acidum Acetylsalicylicum、Adiro、Albyl、Aluprin、Asadrine、Aspirinetas、Bayaspirina、 Bi-Prin、Codral Junior、Ecotri、Ecotrin、Elsprin、Empirin、Enteretas、Novosprin、Rhonal、 Salitison、Salicylic Acid Acetate等
  ■拉丁名称:Aspirin
  ■化学名称:2-(乙酰氧基)苯甲酸
  ■分子结构式为:C9H8O4
  ■分子相对质量:180.16
  ■阿司匹林简介
  阿司匹林是历史悠久的解热镇痛药,它诞生于1899年3月6日。早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,这与TXA2生成的减少有关。 临床上用于预防心脑血管疾病的发作。
  根据文献记载,都说阿司匹林的发明人是德国的费利克斯·霍夫曼,但这项发明中,起着非常重要作用的还有一位犹太化学家阿图尔·艾兴格林。阿图尔·艾兴格林的辛酸故事发生在1934年至1949年间。1934年,费利克斯·霍夫曼宣称是他本人发明了阿司匹林。当时的德国正处在纳粹统治的黑暗时期,对犹太人的迫害已经愈演愈烈。在这种情况下,狂妄的纳粹统治者更不愿意承认阿司匹林的发明者有犹太人这个事实,于是便将错就错把发明家的桂冠戴到了费利克斯·霍夫曼一个人的头上,为他们的“大日耳曼民族优越论”贴金。纳粹统治者为了堵住阿图尔·艾兴格林的嘴,还把他关进了集中营。第二次世界大战结束后,大约在1949年前后,阿图尔·艾兴格林又提出这个问题,但不久他就去世了。从此这事便石沉大海。 英国医学家、史学家瓦尔特·斯尼德几经周折获得德国拜尔公司的特许,查阅了拜e公司实验室的全部档案,终于以确凿的事实恢复了这项发明的历史真面目。他指出:在阿司匹林的发明中,阿图尔·艾兴格林功不可没。事实是在1897年,费利克斯·霍夫曼的确第一次合成了构成阿司匹林的主要物质,但他是在他的上司——知名的化学家阿图尔·艾兴格林的指导下,并且完全采用艾兴格林提出的技术路线才获得成功的。

  【适用病症】
  本药临床可用于下列情况。
  ■镇痛、解热
  可缓解轻度或中度的疼痛,如头痛、牙痛、 神经痛、肌肉痛及月经痛,也用于感冒、流感等退热。本品仅能缓解症状,不能治疗引起疼痛、发热的病因,故需同时应用其他药物参因治疗。

  ■消炎、抗风湿
  阿司匹林为治疗风湿热的首选药物,用药后可解热、减轻炎症,使关节症状好转,血沉下降,但不能去除风湿的基本病理改变,也不能预防心脏损害及其他合并症。如已有明显心肌炎,一般都主张先用肾上腺皮质激素,在风湿症状控制之后、停用激素之前,加用本品治疗,以减少停用激素后引起的反跳现象。

  ■关节炎
  除风湿性关节炎外, 本品也用于治疗类风湿性关节炎,可改善症状,为进一步治疗创造条件。此外,本品用于骨关节炎、强直性脊椎炎、幼年型关节炎以及其他非风湿性炎症的骨骼肌肉疼痛,也能缓解症状。

  ■抗血栓
  本品对血小板聚集有抑制作用,阻止血栓形成, 临床可用于预防暂时性脑缺血发作、心肌梗塞、心房颤动、人工心脏瓣膜、动静脉瘘或其他手术后的血栓形成。也可用于治疗不稳定型心绞痛。

  ■皮肤粘膜淋巴结综合症(川崎病)
  儿科适用。

  【用法用量】
  注意:应与食物同服或用水冲服,以减少对胃肠的刺激
  ■成人常用量口服。
  ①解热、镇痛,一次0.3—0.6g,一日3次,必要时每4小时1次
  ②抗风湿,一日3—5g(急性风湿热可用到7~8g),分 4次口服
  ③抑制血小板聚集,尚无明确用量,多数主张应用小剂量,如50—150mg,每24小时 1次
  ④治疗胆道蛔虫病,一次1g,一日2—3次,连用2—3日;阵发性绞疼停止 24小时后停用,然后进行驱虫治疗

  ■小儿常用量口服。
  ①解热、镇痛,每日按体表面积1.5g/平方米,分4~6次口服,或每次按体重5—10mg/kg,或每次每岁60mg,必要时4~6小时1次
  ②抗风湿,每日按体重80~100mg/kg,分3—4次服,如1—2周未获疗效,可根据血药浓度调整用量。有些病例需增至每日130mg/kg。
  ③小儿用于皮肤粘膜淋巴结综合征(川崎病),开始每日按体重80—100mg/kg,分3—4次服,热退2—3天后改为每日30mg/kg,分 2—4次服,连服2月或更久,血小板增多、血液呈高凝状态期间,每日5—10mg/kg,1次顿服。
  ④预防血栓、动脉粥样硬化及心肌梗塞:0.3/次,一日1次;预防暂时性脑缺血,每次0.6g,一日2次。
  ⑤治疗胆道蛔虫:每次1g,一日2-3次,连服2-3日。
  ⑥治疗X线照射或放疗引起的腹泻,每次服0.6-0.9g,一日4次。 (6)治足癣,先用温开水或1:5000高锰酸钾溶液洗涤,然后本品粉末撒布患处,一般2-4次可愈。水杨酸类早晨给药达峰时间长,半衰期长,晚间相反。合理给药应早晨用量略增加。晚间加服一次。

  ■部分疾病患者的用法及最佳用量
  ①在预防瓣脑性心脏病发生全身性动脉栓塞方面,单独应用阿司匹林无效,但与双嘧达莫合用,可加强小剂量双嘧达莫的效果。
  ②避免和糖皮质激素合用;避免与香豆素类抗凝药、降血糖药氨甲蝶呤、巴比妥类、苯胺类等合用。
  ③饭后服。美国胸科医师学会抗栓和溶栓治疗学会(ACCP)的循证指南指出,使用阿司匹林预防心肌梗死、脑卒中和血管性死亡,患者应根据病情,使用最佳剂量。

  大量的临床试验显示,对大部分病人来说,包括慢性稳定性或不稳定心绞痛患者,阿司匹林75mg/日可有效降低发生急性心肌梗死和死亡的危险。这一剂量也可降低一过性脑缺血发作患者脑卒中和死亡的发生率。欧洲一项脑卒中预防研究显示,既往有一过性脑缺血发作和脑卒中病史的患者使用阿司匹林25mg,每日2 次,即50mg/日可降低脑卒中或死亡的危险。临床实践证明,患者即使服用比表中剂量更高的阿司匹林,疗效不会进一步增加,但副作用的发生却大大增加。因此在治疗各种血栓性疾病中,患者应该使用最小的有效剂量,亦即长期应用50—160mg/日,以达到最大疗效,而毒副作用则减至最小,这才是患者服用阿司匹林的最佳剂量。

  【不良反应】

  一般用于解热镇痛的剂量很少引起不良反应。但长期大量用药(如治疗风湿热)、尤其是当药物血浓度>200μg/ml时则较易出现副作用。血浓度愈高,副作用愈明显。

  ◆较常见的有恶心、呕吐、上腹部不适或疼痛(由于本品对胃粘膜直接刺激引起)等胃肠道反应(发生率 3—9%)。

  ◆较少见或很少见的有(发生率<3%);
  ①胃肠道出血或溃疡,表现为血性或柏油样便,胃部剧痛或呕吐血性或咖啡样物,多见于大剂量服药患者;据报道每天服用 4—6g者有 70%每天出血 3—10ml,有溃疡形成者出血量可更多,并可引起失血性贫血;服用肠溶片剂很少有胃肠刺激反应;
  ②支气管痉挛性过敏反应,表现为呼吸短促、呼吸困难或哮喘、胸闷;
  ③皮肤过敏反应,表现为皮疹、荨麻疹、皮肤瘙痒等;
  ④肝、肾功能损害,与剂量大小有关,尤其是剂量过大使血药浓度达 250μg/ml时易发生。损害均是可逆性的,停药后可恢复。

  ■具体分类

  ◆过敏反应
  特异体质者服用此药后可引起皮疹、血管神经性水肿及哮喘等过敏反应,其发生率约为20%,多见于中年人或鼻炎、鼻息肉患者。哮喘大多严重而持久,可伴有荨麻疹或喉头水肿,用皮质激素有效。这种现象机制还不十分清楚。可能这些人对阿司匹林具有特异的药理反应。

  ◆胃黏膜损伤
  阿司匹林可引起胃黏膜糜烂、出血及溃疡等。多数患者服中等剂量阿司匹林数天,即见大便隐血试验阳性;长期服用本药者溃疡病发率高。笔者曾遇1例患者因高热口服阿司匹林0.6g/次,每日2次,3日后呕血500ml。除药物的酸性直接致胃黏膜损伤外,注射用药亦可发生。阿司匹林能透过胃黏膜上皮脂蛋白膜层,破坏脂蛋白膜的保护作用,于是胃酸就可逆地弥散到组织中损伤细胞,致毛细血管破损而出血。近来发现前列腺素对于维护胃黏膜具有一定的作用,而阿司匹林已证明能阻止前列腺素的合成,使胃黏膜上皮脱落增加并超过更新速度,加重溃疡的程度,使胃黏液减少。为此,应用阿司匹林时最好饭后服用或与抗酸药同服,溃疡病患者应慎用或不用。

  ◆肝损害
  阿司匹林所致的肝损害,在国内报道较少,有资料表明:当血清阿司匹林浓度下降后,转氨酶也恢复正常。药物引起肝损害可能与肝细胞中毒或过敏反应有关。

  ◆出血、溶血、造血功能障碍
  阿司匹林有扩张冠状动脉和脑血管作用,未能抑制凝血酶原在肝脏合成,能抑制环氧酶的活性和减少凝栓质A2的形成,阻止血小板聚集,使其不易放出凝血因子,具有一定的抗凝血作用。为此,有消化道出血或溃疡病者,在临床上有出血倾向或者近期有脑出血病史者不宜服用本药。孕妇服用阿司匹林,在早产儿中常出现脑损害如脑出血等,因此,孕妇在分娩前2~3个月应停用本品。阿司匹林可引起造血功能障碍。笔者曾见1例服用本品引起急性造血功能停滞患者,服用本品4h 后全身发痒,7h后鼻衄、牙龈出血不止,伴全身紫癜,骨髓象示红细胞系明显受抑,经对症治疗,10天后骨髓象恢复正常。阿司匹林偶可引起溶血。

  ◆肾损害
  临床观察和动物实验证明,长期使用阿司匹林可发生间质性肾炎、肾乳头坏死、肾功能减退。长期大量服用本品可致氧化磷酸化解耦联,钾从肾小管细胞外逸,导致缺钾、尿中尿酸排出过高,较大损害是下段尿中可出现蛋白、细胞、管型等。

  ◆神经精神症状
  用抗风湿剂量时,在治疗开始的3~4天,有时出现所谓水杨酸反应,症状为头痛、眩晕、耳鸣、视听力减退,用药量过大时,可出现精神错乱、惊厥甚至昏迷等。

  【禁用慎用】
  ■综括
  12岁以下儿童可能引起雷耶氏综合症,高尿酸血症,长期使用可引起肝损害。妊娠期妇女避免使用。饮酒者服用治疗量阿司匹林,会引起自发性前房出血,所以创伤性前房出血患者不宜用阿司匹林。剖腹产或流产患者禁用阿司匹林;阿司匹林使6-磷酸葡萄糖脱氢酶缺陷的溶血性贫血患者的溶血恶化;新生儿、幼儿和老年人似对阿司匹林影响出血特别敏感。治疗剂量能使2岁以下儿童发生代谢性酸中毒、发热、过度换气及大脑症状。

  ■交叉过敏反应。对本品过敏时也可能对另一种水杨酸类药过敏。但是对本品过敏者不一定对非乙酰化的水杨酸类药过敏。

  ■本品易于通过胎盘。动物试验在前 3个月应用本品可致畸胎,如脊椎裂、头颅裂、面部裂、腿部畸形,以及中枢神经系统、内脏和骨骼的发育不全。在人类也有报道应用本品后发生胎儿缺陷者。此外在妊娠后期3个月长期大量应用本品可使妊娠期延长,有增加过期产综合征及产前出血的危险。在妊娠最后 2周应用,可增加胎儿出血或新生儿出血的危险。在妊娠晚期长期用药也有可能使胎儿动脉导管收缩或早期闭锁,导致新生儿持续性肺动脉高压及心力衰竭。曾有在妊娠晚期过量应用或滥用增加死胎或新生儿死亡的发生率(可能由于动脉导管闭锁、产前出血或体重过低)的报道,但是应用一般治疗剂量尚未发现上述副作用。

  ■本品可在乳汁中排泄,哺乳期妇女口服 650mg,5—8小时后乳汁中药物浓度可达173—483μg/ml,故长期大剂量用药时婴儿有可能产生不良反应。

  ■老年患者服用本品易出现毒性反应。

  ■小儿患者,尤其是有发热及脱水者,易出现毒性反应。急性发热性疾病,尤其是流感及水痘患儿应用本品,可能与发生瑞氏综合征(Reye’s syndrome)有关,中国尚不多见。

  ■下列情况应禁用:
  ①有出血症状的溃疡病或其他活动性出血时;②血友病或血小板减少症。
  ②溃疡病或腐蚀性胃炎;
  ③葡萄糖6磷酸脱氢酶缺陷者(本品偶见引起溶血性贫血);
  ④痛风(本品可影响其他排尿酸药的作用,小剂量时可能引起尿酸滞留);
  ⑤肝功能减退时可加重肝脏毒性反应,加重出血倾向,肝功能不全和肝硬变患者易出现肾脏不良反应;
  ⑥心功能不全或高血压,大量用药时可能引起心力衰竭或肺水肿;
  ⑦肾功能衰竭时可有加重肾脏毒性的危险。

  ■下列情况时应慎用:①有哮喘及其他过敏性反应时

  【注意事项】
  ■服药说明
  ◆扁桃体摘除或口腔手术后7日内应整片吞服,以免嚼碎后接触伤口,引起损伤
  ◆外科手术病人,应在术前 5天停用。以免引起凝血障碍
  ◆用于治疗关节炎时,剂量应逐渐增加,直到症状缓解,达有效血药浓度(其时可出现轻度毒性反应如耳鸣、头痛等,在小儿、老年人或耳聋患者中,这些症状不是可靠指标)后开始减量;但用量的调整不宜频繁,一般不超过每周一次,当然如出现了副作用还应迅速减量;水杨酸类药血药浓度达稳态一般需要7天
  ◆有脱水的患者(尤其是小儿)应减少剂量。长期大量用药时应定期检查红细胞压积、肝功能及血清水杨酸含量测定

  ■与其他药物的相互作用

  ◆与其他非甾体抗炎镇痛药
  与其他非甾体抗炎镇痛药同用时疗效并不加强,而胃肠道副作用(包括溃疡和出血)增加;此外,由于对血小板聚集的抑制作用加强,还可增加其他部位出血的危险。本品与对乙酰氨基酚长期大量同用有引起肾脏病变的可能。

  ◆与任何可引起低凝血酶原血症、血小板减少、血小板聚集功能降低或胃肠道溃疡出血的药物同用时,可有加重凝血障碍,引起出血的危险。

  ◆与抗凝药
  与抗凝药(双香豆素、肝素等)、溶栓药(链激酶、尿激酶)同用,可增加出血的危险。

  ◆与尿碱化药
  尿碱化药(碳酸氢钠等)、抗酸药(长期大量应用)可增加本品自尿中排泄,使血药浓度下降。但当本品血药浓度已达稳定状态而停用碱性药物,又可使本品血药浓度升高到毒性水平。碳酸酐酶抑制药可使尿碱化,但可引起代谢性酸中毒,不仅能使血药浓度降低,而且使本品透入脑组织中的量增多,从而增加毒性反应。

  ◆与尿酸化药
  尿酸化药可减低本品的排泄,使其血药浓度升高。本品血药浓度已达稳定状态的患者加用尿酸化药后可能导致本品血药浓度升高,毒性反应增加。

  ◆与糖皮质激素
  糖皮质激素(简称激素)可增加水杨酸盐的排泄,同用时为了维持本品的血药浓度,必要时应增加本品的剂量。本品与激素长期同用,尤其是大量应用时,当激素减量或停药时可出现水杨酸反应(salicylism),甚至有增加胃肠溃疡和出血的危险。

  ◆与胰岛素或口服降糖药物
  胰岛素或口服降糖药物的降糖效果可因与大量本品同用而加强、加速。

  ◆与甲氨蝶呤
  与甲氨蝶呤(MTX)同用时,可减少甲氨蝶呤与蛋白的结合,减少其从肾脏的排泄,使血浓度升高而毒性反应增加。

  ◆与丙磺舒或磺吡酮
  丙磺舒或磺吡酮(sulfinpyrazone)的排尿酸作用,可因同时应用本品而降低;当水杨酸盐的血药浓度>50μg/ml时降低即明显,>100—150μg/ml时更甚。此外,丙磺舒可降低水杨酸盐自肾脏的清除率,从而使后者的血药浓度升高。它与其他非激素类消炎药或糖激素类合用,有加强对胃的刺激作用。激素有一些降低水杨酸浓度的作用,二者合用后如停用激素,则血中水杨酸浓度升高而中毒。它有加强甲氨蝶呤、磺胺及丙戊酸的作用。它降低卡托普利的降压作用。用碳酸酐酶抑制剂治疗青光眼时,阿司匹林可促使发生代谢性酸中毒。乙醇可加强阿司匹林所致的出血时间延长及胃出血。它不能与抗凝药物合用。

  【药物药理】
  ■药物效力动力学
  ①镇痛作用:主要是通过抑制前列腺素及其他能使痛觉对机械性或化学性刺激敏感的物质(如缓激肽、组胺)的合成,属于外周性镇痛药。但不能排除中枢镇痛(可能作用于下视丘)的可能性;

  ②消炎作用;确切的机制尚不清楚,可能由于本品作用于炎症组织,通过抑制前列腺素或其他能引起炎性反应的物质(如组胺)的合成而起消炎作用,抑制溶酶体酶的释放及白细胞活力等也可能与其有关;

  ③解热作用:可能通过作用于下视丘体温调节中枢引起外周血管扩张,皮肤血流增加、出汗、使散热增加而起解热作用,此种中枢性作用可能与前列腺素在下视丘的合成受到抑制有关;

  ④抗风湿作用:本品抗风湿的机制,除解热、镇痛作用外,主要在于消炎作用;

  ⑤对血小板聚集的抑制作用:是通过抑制血小板的前列腺素环氧酶( prostaglandin cyclooxygenase)、从而防止血栓烷A2(thromboxane A2TXA2)的生成而起作用(TXA2可促使血小板聚集)。此作用为不可逆性。

  ■药物代谢动力学
  口服后吸收迅速、完全。在胃内已开始吸收,在小肠上部可吸收大部分。吸收率与溶解度、胃肠道pH有关。食物可降低吸收速率,但不影响吸收量。肠溶片剂吸收慢。本品与碳酸氢钠同服吸收较快。吸收后分布于各组织,也能渗入关节腔、脑脊液中。阿司匹林的蛋白结合率低,但水解后的水杨酸盐蛋白结合率为 65~90%。血药浓度高时结合率相应地降低。肾功能不良及妊娠时给合率也低。半衰期为15~20小钟; 水杨酸盐的半衰期长短取决于剂量的大小和尿pH, 一次服小剂量时约为2~3小时; 大剂量时可达20小时以上, 反复用药时可达5~18小时。一次口服阿司匹林0.65g后,在乳汁中的水杨酸盐半衰期为3.8~12.5小时。本品在胃肠道、肝及血液内大部分很快水解为水杨酸盐,然后在肝脏代谢。代谢物主要为水杨尿酸(salicyluric acid)及葡糖醛酸结合物, 小部分氧化为龙胆酸(gentisic acid)。一次服药后1~2 小时达血药峰值。镇痛、解热时血药浓度为25~50μg/ml; 抗内湿、消炎时为150~300μg/ml。血药浓度达稳定状态所需的时间随每日剂量及血药浓度的增加而增加,在大剂量用药(如抗风湿)时可长达7天。长期大剂量用药的患者,因药物主要代谢途经已经饱和,剂量微增即可导致血药浓度较大的改变。本品大部分以结合的代谢物、小部分以游离的水杨酸从肾脏排泄。服用量较大时,未经代谢的水杨酸的排泄量增多。个体间可有很大的差别。尿的pH对排泄速度有影响, 在碱性尿中排泄速度加快,而且游离的水杨酸量增多,在酸性尿中则相反。

  【药物毒理】
  阿司匹林为一复方解热镇痛药。其中阿司匹林和非那西丁均具有解热镇痛作用,能抑制下丘脑前列腺素的合成和释放,恢复体温调节中枢感受神经元的正常反应性而起退热镇痛作用;阿司匹林还通过抑制外周前列腺素等的合成起镇痛、抗炎和抗风湿作用,阿司匹林还有抑制血小板聚集作用。咖啡因为中枢神经兴奋药,能兴奋大脑皮层,提高对外界的感应性,并有收缩脑血管,加强前两药缓解头痛的效果。急性毒性试验结果:大鼠经口LD50为1500mg/kg;小鼠经口LD50为1100mg/kg。

  【相关事件】
  ■美国宣称“阿司匹林”可致命
  退热净导致肝脏损伤,而阿司匹林和另一种叫做其他非甾体消炎药(NSAIDs)产品则有可能导致胃出血。虽然这些情况只会发生在一小部分人群身上,但一旦发生都是致命的。美国食品与药物管理局(FDA)再次发出郑重警告,在药物外包装的显著位置应标注相关提示,希望借此减少因此出现的不良药物反应。
  ■购买止痛片应遵医嘱
  在美国,每年都有数千万人不通过医生而自己直接购买止痛片,大多数情况下,患者按照说明书服用止痛片不会产生危险。但让专家担忧的是,使用这些药品的患者根本没意识到自己已经属于滥用药物,而且没有意识到药物与其他物品混合时所可能产生的危险。
  一个被广泛使用的例子是,此前研究证明,每年有16500例死亡与服用其他非甾体消炎药(NSAIDs)有关。60岁以上的人服用NSAIDs导致胃出血的可能性很高。
  所以,FDA一直以来都要求在药物外包装的显著位置标注相关提示,以此提醒患者注意。

  【同名电影】
  ■基本信息
  出品/制片:梅婷
  领衔主演:梅婷
  主 演:潘石屹 宋宁 曹俊 李娟
  友情客串:秦海璐、陶虹
  编 剧:鄢泼、傅乙轩
  导 演:鄢泼
  摄 影:许斌
  录 音:董旭
  作 曲:刘思军
  出 品:北京盛世风华影视文化有限公司
  ■剧情简介:
  文静(梅婷饰)是个娱乐记者,在采访了一位歌手的后,内心的波澜把自己再次带回往事回忆当中。在文静看来,每一份爱情都有自己的符号系统。她的第一段爱情还没有开始,就莫名其妙的结束了,而这份爱情符号却是那张没有赴约的纸条。而第二个男友,符号是一种名叫 “高乐”的低档凉烟,她称他高乐。文静和他同甘共苦地抽了一年高乐烟后,高乐前女友写了封遗书后自杀未遂,在前女友和文静之间,高乐决定选择前女友。后来文静进了杂志社,加入娱乐记者的大军,除了热爱电影,她开始发现这个行业很适合自己。不久,文静遇到了自己的第三个男朋友小白(宋宁饰),小白十分干净清秀,总是穿着白衬衫,他还有个特殊习惯――喜欢用有着消毒药水味道的药皂,为此他身上总隐隐约约带着一股药皂味儿,这股特殊的味道成了小白留在文静记忆中最深刻的符号。在著名的诺查丹马斯预言中的世界末日的那天,文静和小白相约一起等待传说中的大毁灭。喝掉若干瓶啤酒后,有些醉意小白颓丧地告诉文静他觉得自己就像苍蝇一头撞在玻璃上――有光明,没前途。文静这才惊觉,小白内心的疼痛。世界没有灭亡,可爱情却不能永恒。文静决定让小白出国。小白走后,文静搬了家,换了电话和工作。文静始终没有告诉小白自己其实是多么爱他在一次聚会的餐馆里,文静遇到年届中年,在一家美国投资公司做基金总监的李文卿(潘石屹饰),离婚后,李文卿在爱情中迷茫,那天文静给了李文卿一片可以镇痛的阿司匹林。接下来,在李文卿的强烈攻势下,两个人开始有了关于爱的交集,相互关爱的依恋,让文静开始渐渐找到爱的安逸。直到那一刻,文静最终在成为美国中产的老婆和继续等待爱情之间做出了自己的选择……

上一篇:机械图纸论文答辩

下一篇:鞭打我吧论文题目