欢迎来到学术参考网
当前位置:发表论文>论文发表

供用电技术论文

发布时间:2023-11-03 09:43

供用电技术论文

副标题#
  供电技术论文篇二
  供电可靠性技术研究

  摘要: 供电可靠性是衡量电力系统技术水平的一项重要内容,实现供电可靠性才能科学的发挥供电设备的最大潜力,以达到为用户提供优质的电力服务,实现供电系统的安全。由此可见加大对供电可靠性的研究,不断提高电力系统的供电技术水平就成为电力企业必须要认真对待的问题。本文对企业如何实现供电的可靠性做了详细的论述,并提出了针对性的措施。

  关键词:电力系统;供电可靠性;技术措施

  中图分类号:U223.5文献标识码:A 文章编号:

  在电力系统中,供电可靠性一般用供电可靠率来进行考核,供电可靠率是指在统计时间内,对用户有效供电时间总小时数与统计期间小时数的比值,由此可见,要提高供电可靠率就要尽量缩短用户的平均停电时间,以下笔者对电力系统如何提高供电可靠性提出了一些技术措施。

  一、实现供电可靠性的重要意义

  随着我国经济和社会科学技术的不断发展,使得变电运行系统的可靠性越来越重要,供电可靠性用户直接相连,由于变电运行系统多采用辐射式的网状结构,因此对独立的故障非常敏感,对用电客户的电力供应可靠性的影响也是最大的,直接关系着国民经济的发展。对变电运行供电系统的可靠性进行研究是供用电质量的保证,同时也是实现电力工业现代化发展的有力抓手,对完善和改进我国电力工业技术与管理,提高其经济效益与社会效益以及进行电力运行网络建设和改造意义重大而深远。在当前市场经济环境下,供电的可靠性是电力生产企业保证自身经济发展的基础,也是电力企业必须实现的技术指标,它已经成为电力企业管理的一项重要内容。

  二、实现供电可靠性的有效措施

  (一)提高供电可靠性的技术措施

  1、加大检修力度

  加快实现现代化的电网改造是提高供电可靠性的关键,这就要求我们在电网改造方面加大改进力度。电网改造离不开科技的运用,为了提高供电可靠性,要推广状态检修,通过在线监测及红外测温等科学手段按实际需要进行停电检修。在保证安全的情况下大力开展带电作业的研究,减少设备停电时间。还要采用免维护或少维护设备,延长设备检修周期,并根据实际情况改变设备到期必修的惯例。

  2、实现配电网络保护自动化

  开展配电网络保护自动化工作,实现故障区段隔离、诊断及恢复、网络的过负荷监测、实时调整和变更电网运行方式和负荷的转移等来减少停电频率。加快对旧站进行综合自动化改造,积极开展配电线路自动化的研究工作,通过研究配电网结线主要模式,根据实际情况制定符合且满足配电自动化要求的改造方案并逐步实施。

  3、加强配电线路的绝缘性

  安排供电主要设备的停电时对供电可靠率的影响中架空线路占很大的比例,所以提高线路的绝缘性对供电可靠性的提高有明显的作用。可以利用电力电缆供电容量大、占路径小及故障率低的特点,不断加大铺设的电缆条数,对新建的线路也尽可能使用电缆。对因地理因素而条件不足的线路,建议将裸导线更换为绝缘导线,以提高抵御自然灾害的能力。

  4、加大检修的灵活性

  在配电检修中,应尝试将每年单一性的配电设备检修计划改为根据设备的具体技术状况及实际运行存在的缺陷的多少及其严重性进行状态检修,对是否进行配电网施工作业进行灵活处理。可以通过改良接线,保证线路以灵活方式和适当负荷水平运行,特别是多用户的线路。

  5、完善低压网及台区的改造

  低压网的改造应逐步用低压电缆取代原来的接户线,以解决因用户负荷增加而进线容量不足引起的故障。另外还要完善台区的改造,升高台架避免由用户引起的事故性停电。在台区改造时要严格按照设计标准实行规划改造并分步实施,并且要加强与城建规划和市政建设的协调配合做好宣传工作,以解决实际工作中存在的问题,加大低压台区改造的力度。

  6、加大巡查力度

  加强配网维护与巡查工作,特别是在多用户和常发故障的线路,发现缺陷要及时处理,不断提高设备完好水平。另外,还要做好预防事故及事后的抢修工作。

  (二) 提高供电可靠性的组织措施

  1、分解指标超前预测

  在组织措施上要实行指标的分解,找出影响供电可靠率的直接原因,还要编制具体的可靠性指标滚动计划,对可靠性指标进行超前控制。

  2、加强计划停电的管理

  要加强计划和临时停电的管理,尽量缩短停电时间,加强协调配合及进行其他改革。统筹安排计划停电,使输、变、配电施工一条龙同时进行。还要利用事故处理的机会进行预接开关或其他设备的检修工作,达到一次停电多方维护。

  3、制定管理考核方法

  制定具体的供电可靠性管理考核方法,完善事故处理等相关制度,使供电可靠性管理工作日趋完善,尽量减少停电时间,提高供电可靠性。

  4、加强基础资料的管理

  对基础资料的收集和整理及对基础资料的完善有助于准确统计出供电可靠率,从而找出影响供电可靠性的主要原因而及时进行改善。

  (三)提高供电设备使用质量的措施

  1、采用新产品不断提高设备的运行可靠性

  采用高质量免维护的六氟化硫和真空断路器、微机保护等优良产品来提高设备运行的可靠性。近几年来线路继电保护装置全部更换为微机保护装置,电出线也更换为微机保护装置。采用优质的设备能大大减少停电机会,减少因设备原因而造成的停电次数,能够有效地提高运行可靠性。

  2、做好运行维护工作提高设备健康水平

  电力系统的各种电气设备和输配电线路以及保护装置都有可能会因发生故障而影响系统的正常运行,对用户的正常供电产生很大影响。在提高设备的健康运行水平方面,做好预防工作和事故预想是保证设备安全运行减少设备故障的有效方法,运行人员加强巡视维护质量可以及时发现或消除设备隐患,提高供电可靠性。

  (四)缩短停电时间提前做好设备停送电准备工作

  供电可靠性承包方案规定停电期间的工作票准备和停送电操作所占用的时间,为变电所值班人员的承包时间。对计划内或非计划内的停送电工作,运行人员积极与施工部门配合提前做好准备工作。

  1、加强两票准备工作

  为缩短填写操作票时间和保证在操作完成后办理许可工作手续,变电所在停电工作前一天接到调度下达停电工作计划命令后,所长或当值值班长要与施工单位调度联系,由签发人签发好第二天的工作票,前一天晚上当班运行人员必须准备好第二天停、送电全部操作票及许可工作票。每一次操作前当班都要将安全工具、标示牌等放置在准备使用的地点以备待用。当调度下令后即可立刻执行操作任务,这样既加快了速度,也缩短了许可工作时间。

  2、 及时了解现场工作进度

  值班人员应随时了解现场工作进度,提前做好送电准备工作。一旦现场工作提前结束应做到随时能恢复送电操作。工作票、操作票处理工作除交接班时间以外,能在本班完成的尽量完成,不能无故推延到下一班。接班人员接班后根据接班情况,应及时安排本班的工作任务,发现问题要以现场工作为主,及时解决不得推逶。

  3、实行双重监护制安全按时完成工作任务

  为了在规定时间内按时完成工作任务又能保证供电安全,对各变电所可以实行所长或值长与监护人双重监护制。操作时所长或值长与操作监护人共同监督其操作,操作结束后站长或值长与监护人分工布置现场安全措施和调度报告,采用这种管理办法后,有效地压缩了操作时间,也缩短了工作票许可时间。

  结 语

  供电系统的可靠性是衡量供电系统对用户持续供电能力的有效量度。电力可靠性管理是电力系统和设备的全面质量管理和全过程的安全管理,是适合现代化电力行业特点的科学管理方法之一,也是电力工业现代化管理的一个重要组成部分,所以在具体实践中要对供电可靠性进行系统的研究和高度的重视。

  参考文献

  [1] 范明天,刘思革,张祖平,周孝信.城市供电应急管理研究与展望[J]. 电网技术. 2007(10)

  [2] 邱丽萍,范明天.城市电网最大供电能力评价算法[J]. 电网技术. 2006(09)

  
看了“供电技术论文”的人还看:

1. 电力方面专业技术论文

2. 电力技术论文范文

3. 浅谈电力技术论文

4. 电力专业技术论文

5. 有关电力行业技术论文

关于电力的配电线路的论文!5000字以上!

配电网络规划
配电网络的规划是供电企业的一项重要工作,为了获取最大的经济效益,电网规划既要保证电网安全可靠,又要保证电网经济运行,所以配电网络规划的主要任务是,在可行技术的条件下,为满足负荷发展的需求,制定可行的电网发展方案。

1 负荷预测

网络规划设计最终目的是为满足负荷需求服务的,负荷的发展状况足以影响网络发展的每个环节。网络规划的发展步骤要以负荷发展状况为依据,使用各馈线负荷数据可以掌握负荷发展情况,将过去的负荷进行分析,掌握负荷的发展规律。要对负荷进行分析,确定最高用电负荷时间和负荷率,得出最高用电负荷时间和负荷值,这些数据是预测未来负荷的基本资料。配电网络规划可以使用两种常用的预测方法。外推法就是基于用电区域的历史数据,假设负荷发展率是连续变化的,根据原来的负荷发展率推移以后各时期的发展状况。在一个用电区域里,初期负荷发展比较快,但土地资源逐步使用,用电负荷逐步趋于稳定,负荷发展率从大到小变化,最终负荷达到饱和或稳步发展状态。但对于经济发展迅速的地区,负荷发展率并不是连续变化的,而是呈现跳跃式的增长,用外推法显得有一定的误差。而仿真法与外推法有互补的作用,仿真法是以用电区域每年的用电量为依据的,通过调查每个用电负荷类型和每个类型用户的数量来计算负荷预测值。任何负荷预测方法都不可能完全准确,当掌握更新的负荷发展数据后,就必须对原有的负荷预测值进行修正。

2 确定网络的系统模型

确定网络的系统模型,包括确定网络是采用架空线路还是电缆供电,确定导线截面大小,网络接线方式,负荷转移方案,网络中有关设备的选型,网络在运行期间遇到不适应要求时应如何进行改造,系统保护功能,配网自动化规划等。

(1)在负荷分散或发展缓慢地区应使用架空线供电。在负荷密度比较大、发展迅速或基于城市环境美化建设考虑,应使用电缆供电。

(2)导线截面大小的选择确定了导线的输送容量,要选择足够大的导线保证线路满足网络规划的要求,例如:负荷发展时期,不应经常更换导线截面。在线路故障时,可以将故障线路的负荷转由临近馈线供电,而不会过负荷运行。另外,导线截面的选择要保证线路末端电压降处于合格的范围内。在线路发生短路故障时也能承受故障电流。所以导线截面要比最大负荷电流所需的截面大,但同时截面的选择要符合经济原则,在导线输送容量与工程投资之间作比较。

(3)具有灵活接线方式的规划,可以使供电网络最大地发挥功能。对于架空线网络,最有效的方式,是将馈线与邻近变电所或同一个变电所的不同母线段的出线在线路末端联网,两回馈线也分别装上分段负荷开关和隔离刀闸。在其中一回馈线出现故障时,可通过分段开关将故障段隔离出来,对于电缆网络接线方式可以采用两回馈线组成互为备用网络,或采用三回馈线相互联络组成一个供电区域,其中两回带负荷,一回空载,作为两回负荷线的备用线。馈线之间可以组成大环网,一条馈线的负荷之间也可以组成小环网,形成大环套小环的形式。在负荷密集地区还可以建设开关站,变电所与开关站通过电源线连接,再由开关站向附近负荷供电,其作用是将变电所母线延长至用电负荷附近。

(4)制定负荷转移方案的原则是减少停电范围,尽量减少停电时间。在发现回馈线发生故障时,必须尽快查找到故障点,并将故障点前后的负荷转由邻近馈线供电,以使故障点的负荷隔离出去。

(5)国内外对各种电气设备都制定了详细标准,为设备选型提供了可靠依据。作为配网规划应选用运行效益好,损耗低,可靠性高,免维护的设备。对于开关设备应选用具备配网自动化功能,在设备中先安装配网自动化设备或者为以后发展预留空间。有些新型设备的购置费用虽然高,但运行可靠性高,故障率低,维护费用少,总体经济效益是相当理想的。

(6)配电网络规划在实施过程中随着负荷的发展状况稳定,在馈线负荷超出安全电流或没有足够的备用容量时,应该增加馈线,对用电区域的馈线正常供电范围进行调整。同时,配网规划内容也应作相应修改。

(7)为确保电网正常运行,必须建立健全的保护系统,在系统出现故障时,通过最少的操作次数将故障点隔离,保证非故障点尽早恢复用电。现在常用的系统保护方法有:

①用熔断器或过电流继电器实现过流保护,熔断器在超过熔断电流时自动熔断,迅速切断电流、保护用电设备,熔断器主要用于变压器保护。过电流继电器用于线路保护。

②接地故障保护用于消除接地故障,对直接接地或通过不可调阻抗接地的系统,可以把电流互感器二次绕组接到接地故障继电器上,或者把过流继电器与接地故障继电器集中使用。对于中性点不接地系统或通过消弧线圈接地的系统,由于接地故障会造成系统电压和电流不对称,继电器可根据基本判据来确定是否控制相应的断路器动作断开。

③单元保护,用于对系统中一个单元的保护,根据正常运行两侧电压相同的电路,流入的电流和流出的电流是相同的,通过比较两侧电流大小可以判断是否出现故障。但是单元保护要使用通讯线路,在保护线路太长的地方,很难将数据完整地集中起来进行比较。使用距离保护法可以打破这种局限性,在距离保护方案中,根据故障距离与故障阻抗成正比的原理,采用线路的电压和电流来计算故障距离。

④自动重合闸装置的方法是利用继电器控制断路器去执行不同的跳闸与闭合顺序。线路中有大部分故障是可以自动消除或暂时性的,使用自动重合闸装置可以自动恢复供电。⑤电力系统中,有时出现运行电压远远超过额定电压值的情况,例如:开关操作瞬间或系统受雷击时,都会产生过电压现象。加强各设备绝缘强度和绝缘水平,或在网络中安装过电压保护设备,可以使过电压降低到安全水平,例如使用空气间隙保护或安装避雷器作保护。

(8)配电网络自动化管理系统是利用计算机网络,将自动控制系统和管理信息系统结合起来,建立系统控制和数据采集系统,为全面管理网络安全和经济运行提供依据。配网自动化系统的主要功能可以分成四个组成部分,第一是电网运行监控和管理功能,包括电网运行监视,电网运行的控制,故障诊断分析与恢复供电,运行数据统计及报告。第二是运行计划模拟和优化功能,包括配网运行模拟,倒闸操作计划的编制,各关口电量分配计划和优化。第三是运行分析和维护管理功能,包括对电网故障和供电质量反馈的信息进行分析,确定系统薄弱环节安排维修计划。第四是用户负荷监控和报障功能,包括用户端负荷和电能质量的遥测,用户端计量设备的控制,用户故障报修处理系统。

3 效益评估

配网规划经济效益评估,包括电网投资与增加用电量所产生收益的比较,以及为了使电网供电可靠性,线损率,电压合格率达到一定指标与所需投入费用之间的比较,采用投资与收益的研究可以确定使用那一种供电方式。

加快电力建设为地区经济发展提供了有利条件,但是电网投资与增加的用电量作比较,以此确定这些投资是否值得。所以电网投资要以分地区分时期发展,用电量发展快的地方相应电网投资也大,用电量发展慢的地方,相应电网投资也少一些。

对于用户来说,供电可靠性越高越好,但相应电网的投资也会大大增加。对于大用电量或重要用户,为确保有更高的可靠性,可以加大电网投资,因为减少停电时间可以同时减少用户和供电企业的损失。线损率是用来反映电能在电网输送过程中的损耗程度,公共电网中的损耗是由供电企业来承担的,通过对电网设备的技术改造,可以让供电企业直接得到经济效益。为了使供用电设备和生产系统正常运行,国家对供电电压质量制定了标准,对电压的频率、幅值、波形和三相对称性的波动范围作了规定。稳定的电压质量可以使供用电设备免受损害,让用户能正常生产,相比之下用户得到的好处会更多。

求论文一篇 《供配电技术在工农业生产和日常生活中的应用 节约用电》 1079051398@

  第一章 变电所主变压器的选择及主接线的设计
  一、变电所主变压器台数、容量及型式的选择
  1、变压器台数的选择
  据国际《35-110 KV变电所设计规范GB50059-92》有关条文规定,为保证供电的可靠性,变电所一般装设两台主变,当只有一个电源的变电所可由低压侧电网取得备用电源给重要负荷供电时,可装设一台,现时待设变电所有水电厂和220 KV变电所两个电源,故选择2台主变。
  2、主变压器容量的选择
  主变容量应根据5-10年的发展规划进行选择,适当考虑到远期10-20年负荷的发展,对城郊变电所,主变压器容量还应与城市规划相结合。并应考虑主变正常运行和事故时的过负荷能力。对选两台主变的变电所,每台变压器的容量一般按式Sn=0.7Pm(Pm为变电所最大负荷)选择:
  按5年发展规划:Sn=0.7Pm=16.44(MVA)
  按10年发展规划:Sn=0.7Pm=20.98(MVA)
  这样当一台主变停用时,可保证对70%负荷供电,考虑变压器的事故过负荷能力40%,而可保证对98%负荷供电,由于一般变电所大约有25%的非重要负荷,因此在一台主变停用时,仍能对一、二级负荷供电。
  3、 主变压器型式的选择
  变压器有油浸式和干式两种,一般在户外情况下采用三相油浸节能型变压器。具有三种电压的变电所,如通过各侧绕组的功率均达到15%以上时,多采用自耦变压器,以得到较大的经济效益。现待设变电所为郊区中间变电所,且只有110 KV和10 KV两个电压等级,所以待设变电所选择三相双绕组高阻抗有载调压油浸式变压器,查《设备手册》选择型号为 SFZ7系列110KV级双绕组有载调压变压器,其技术参数列于表1-1

  表1-1 SFZ7系列110KV级双绕组有载调压变压器技术参数表

  发展方案
  型号
  额定容量(KVA) 额定电压(KV) 损耗(KW) 阻抗电压(%) 空载电流(%) 连接组别
  高压 低压 空载 负载

  5年
  SFZ7-16000/110
  16000 110±8×1.5%
  10.5
  25.3
  86
  10.5
  1.1
  Yn,d11
  10年 SFZ7-20000/110 20000 110±8×1.5%
  10.5
  30
  104
  10.5
  1.2
  Yn,d11

  二、变电所主接线的设计原则
  待设的110KV变电站为市郊中间变电站,是降压变电站具有110KV、10KV两个电压等级。高压侧为电源侧,有二回路,其中连接着110KV水电厂一个和220KV变电站一个的一回110KV线路,距离待设变电站分别为12KM和10KM。两电源之间存在15MW的功率交换,低压侧10KV为负荷侧,负荷性质分别为:I、II、III类。根据负荷性质,应设计20回10KV馈线其中包括四回备用馈线。
  变电所主接线的设计对电气设备的选择。配电装置的布置、工作的灵活性、继电保护以及运行的可靠性与经济合理性有密切关系,而电气主接线是变电所电气部份的主体,对变电所以及电力系统的安全、可靠、经济运行起重要作用。根据我国《变电所设计技术规程》规定:变电所的主接线应根据变电所在电力系统中的地位,回路数、设备特点及负荷性质等条件确定。并且应满足运行可靠、简单灵活。操作方便和节省投资等要求。现就主接线应满足的可靠性、灵活性、经济性三项基本要求说明如下:
  1、保证供电可靠性
  (1)、断路器检修时,不影响对用户供电;
  (2)、设备的母线故障或检修时,应尽量减少停止运行的回数和停运时间并保证对I类和II类负荷的供电;
  (3)尽量避免全变电所停运的可能性
  2、具有一定的灵活性
  (1)、调度灵活,操作方便,应能灵活地投入或切除某些元件,调配电源负荷,能满足系统在事故检修及运行方式下的调整要求。
  (2)、检修安全应能方便地运断路器,母线及继电保护设备进行安全检修而不影响电力网的正常运行及用户的供电。
  (3)扩建方便,应能容易地从初期过渡到最终接线,并在扩建过渡时,一次和二次设备等所需的改造最少。
  3、具有合理的经济性
  (1)投资省,主接线应简单清晰,以节省断路器、隔离开关等一次设备投资,要使控制、保护方式不过于复杂,以利于运行并节约二次设备的电缆投资。
  (2)占地面积小,电气主接线的设计要为配电装置的布置创造条件,以节约用地和节省架构、导线、绝缘子及安装费用。
  (3)电能损耗,经济合理地选择主变压器的型式、容量和台数。避免两次变压而增加电能的损耗。
  综合以上所述,由于待设110KV变电所电源侧110KV有二回线路,低压侧10KV负荷侧负荷的性质分别为I、II、III类。根据负荷性质,必须保证重要负荷供电的连续性、可靠性,为此,拟定本次设计的主接线初步方案。

  三、变电所主接线初步方案
  A、技术比较(确定各级电压等级配电装置的接线方式)
  设计规程规定:
  110 -220 KV配电装置中出线一回时,采用不分段单母线或变压器-线路单元接线,当出线为2回时,一般采用桥形接线,当出线不超过4回时,一般采用单母线分段。出线回数较多,连接的电源较多,负荷大或污秽环境中,则采用双母线接线。
  6-10 KV配电装置中,一般采用单母线分段或单母线。如果单母线分段不能满足供电可靠性,则可采用双母线接线。
  现待设变电所中,其中110 KV侧连着水电厂和220 KV变电所2回进线,由于待设变电所中选用2台主变压器,故引出2回出线,因此采用桥形接线,而在10 KV侧有多个供电线路,为满足供电可靠性可采用单母线分段或双母线。
  1、变电所110 KV侧可能接线方案技术比较如下表1-2所示

  表1-2 变电所110 KV侧接线方案技术比较表
  接线方案
  内桥接线
  外桥接线

  接
  线
  图

  优点
  内桥接线一次侧可装设线路保护,倒换线路时操作方便,设备投资与占地面积少
  对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到单母线分段接线,且投资少,占地面积少

  缺点
  操作变压器和扩建成单母线分段不如外桥方便,不利于变压器经常切换
  倒换线路时操作不方便,变电所一次侧无线路保护
  适用范围
  这种接线适用于进线距离长的终端变
  电所 这种接线适用于进线短而倒闸次数少的变电所或变压器采取经济运行需要经常切换的终端变电所以及可能发展为有穿越负荷的变电所
  技术比较结果

  经上述比较,由于待设变电所两回线路进线分别为12KM和10KM较短,且考虑到以后
  发展的需要,因此选用外桥接线

  2、变电所10 KV侧可能接线方案技术比较如下表1-3所示:
  表1-3 变电所10 KV侧可能接线方案技术表
  接线方案
  单母线分段接线
  双母线接线

  接
  线
  图
  优点 任一母线发生故障时,不影响另一母线运行。单母线分段比双母线所用设备少,系统简单、经济、操作安全
  可靠性比单母线分段高,运行灵活
  缺点 当其中任一段母线需要检修或发生故障时,接于该母线的全部进出线均停止运行 设备投资多,接线复杂,操作安全性较差
  适用范围
  多用于具有一、二级负荷,且进出线较多的变电所
  主要用于负荷容量大,可靠性要求高、进出回路多的变电所
  技术比较结果

  经上述比较,由于待设变电所负荷容量不大,在两种接线方式均满足可靠性的情况下,考虑到经济问题,因此选用单母线分段接线

  B、经济比较
  经过上述技术比较,可初步确定待设变电所的电气主接线。由于主变容量根据5-10年的发展规划进行选择,且选择不同容量的变压器其综合投资和年运行费用就不同,因此进行经济比较是很有必要的,初步拟定按5年发展规划和按10年发展规划两个方案对变压器进行经济比较。查《电气设备选择施工安装设计应用手册》,计算过程详看计算书,可得相关参数如下表1-4所示:

  表1-4 经济比较表
  方案号 综合投资Z(万元) 年运行费用u(万元)
  Ⅰ(按5年发展规划) 98.3 53.3
  II (按10年发展规划) 112 57.7
  比较结果 经上述比较,方案Ⅰ的综合投资和年运行费用都比方案II少,故选择方案Ⅰ(按5年发展规划)
  第二章 变电所自用电接线设计
  自用电接线包括从电源引接至所用电的全部网络,其中高压部分也是电站主接线的组成部分。所用电接线的基本要求与主接线大体相同,其中最主要的是供电的可靠性。对小电站还要力求接线简单、清晰、运行方便,并合理节省费用。现主要以电源的引接方式、接线的形式的供电网络三个层次给予说明,所用变压器选择。
  一、所用变压器的选择
  按设计题目要求,变电所自用负荷接两台100KVA考虑,因此所用变压器应装设两台容量为100KVA的变压器,为了节省一、二次设备的投资和占地面积,以及运行维护的方便。查表可选择SC9—100/10型树脂干式变压器,将其配置成可推拉式,装嵌在10KV高压柜内其技术参数列于表2-1
  表2-1 所用变压器技术参数
  型号 额定容量(KVA) 额定电压(KV) 损耗(KW) 阻抗电压(%) 空载电流(%) 连接组别
  高压 低压 空载 负载
  SC9-100/10 100 10.5±5% 0.4 0.4 1.48 4 2.0 Y/Yn0

  二、所用电的接线形式
  所用电的低压电路还具有相应的接线形式以满足可靠性等方面的要求。
  (1)由前面一章知,单母线分段有较高的可靠性,现决定采用单用单母线分段,二分段母线用自动开关和闸刀开关相联,分段自动开关在正常情况下处于分闸位置,当因故失去一个电源时,投入分段自动开关,由另一电源带全部负荷,这就是暗备用。为了满足I类负荷对恢复供电的紧迫要求宜设置BZT(备用电源自动投入)装置,以加速成切换过程和避免匆忙中的人为操作。两电源不允许在低压侧并列。

  三、负荷供电回路
  所用负荷的供电回路常用以下四种形式,直接或间接地从低压母线取电。
  (1)、一级辐射式供电
  每个回路有单独的隔离引接、保护和操作电器以避免影响主母线的正常运行,供电可靠性较高。一般只限于某些容量较大或较重要的公共负荷。
  (2)、二级辐射式供电
  二级辐射式供电的前提是负荷的分组,采用分组二级供电方式的优点是:A、便于供电的分组管理,方便运行维护;B、减小主盘的供电回数,提高一级辐射供电的可靠性;C、就地设置可大量节约电缆。向Ⅰ、II类负荷供电的分盘应采用有独立的引接闸刀开关的配电盘,以保证供电的可靠性和灵活性。
  (3)、干线式供电
  对一些相邻近的小容量III类负荷或同一用电设备的不同负荷可共用一组供电回路和电源电缆,直接在各负荷的操作电器的电源侧并接电源。
  (4)、环网式供电
  将干线式供电回路的末端接至另一电源,构成环式供电,环式供电用于重要负荷,但同样也禁闭环运行。
  综合考虑供电的可靠性、安全性、技术性和经济性决定采用:高压部分采用单母线分段,负荷配电采用一级辐射式、环网式混合供电。具体图样见图纸书上。
  第三章 短路电流计算及主要设备的选择
  一、短路电流计算
  根据设计的变电所电气主接线绘制出等值电路图,采用标么值计算,取Sj=100MVA;Uj=Up网络,对选择10KV~110KV配电装置的电器和导体,需计算出在最大运行方式下流过电气设备的短路电流,选取d1、d2两个短路点,计算过程详见计算书,各短路点短路电流计算结果见表3-1
  表3-1 短路电流计算结果一览表

  短路点 支路名称
  (KV)
  回路名称 次暂态短路电流
  I″(3)
  (KA) 0.1S短路电流I0.1(3) (KA) 0.2S短路电流I0.2(3)
  (KA) 1S短路电流I1(3)
  (KA) 2S短路电流I2(3)
  (KA) 4S稳态短路电流I∞(3)
  (KA) 短路电流冲击值i ch
  (KA)

  d1

  115 水电厂S=2×30MW/0.8

  1.316

  1.089

  1.061

  1.074

  1.090

  1.108

  3.558
  省网Xxt=∞ 2.181 2.181 2.181 2.181 2.181 2.181 5.561
  短路点总电流Id∑
  3.497
  3.270
  3.242
  3.255
  3.271
  3.289
  8.917

  d2

  10.5 水电厂S=2×30MW/0.8

  4.375

  4.235

  4.322

  4.994

  5.052

  5.052

  11.16
  省网Xxt=∞ 7.451 7.451 7.451 7.451 7.451 7.451 19.00
  短路点总电流Id∑
  11.826
  11.686
  11.773
  12.445
  12.503
  12.503
  30.09
  二、主要电气设备的选择
  在选择电气设备时应遵循如下的原则:
  1、导体和电器力求技术先进,安全适用,经济合理,贯彻以铝代铜,减小占地等政策。
  2、在选择导体和电器时应按正常工作条件进行选择,并按短路情况校验其动稳定和热稳定以满足正常运行、检修和短路情况下的要求。
  3、验算导体和电器的动稳定、热稳定以及电器开断电流所用的短路电流,按本工程的设计规划容量计算,并考虑电力系统的远景发展规划按可能发生最大短路电流的正常接线方式进行计算。
  4、为了便于维修,减少备品备件的型号,设计时同一电压等级的导体和电器尽量采用同一品种。
  5、所选的导体和电器,应按当地的气温、风速、覆冰、海拔等环境条件进行校验
  根据原水电部86年颁布的《导体和电器选择设计技术规程SDGJ14-86》,对主电路所有电气设备进行选择和校验,选择结果列于下列各表中。
  表3-1 10KV高压开关柜一览表
  开关柜的型号
  KYN-10型
  BA1-10、16、25
  一次线路方案编号
  05
  23
  27
  47
  18
  19

  一次线路方案图

  用途

  型号及名称
  馈电
  左右联络
  所用 变压器 TV及避雷器(柜宽1000) 电容器柜(柜宽1000)

  SN10-10Ⅰ/630型少油断路器
  1
  SN10-10III/2000型少油断路器
  1
  1
  LDJ型电流互感器 3 3 3
  UKI-12型电压互感器 3
  RN2-10型熔断器 3
  FZ型避雷器 3 3
  SCL-10型变压器 1
  LQG-0.5型电流互感器 3
  RN3-10型熔断器 3 3
  BW10.5-12-1型电容器 3
  外形尺寸(宽×深×高)mm 800×1500×2200 800×1800×2200 800×1500×2200 800×1500×2200
  额定电流(A) 630 2000

  表3-2: 导体选择结果一览表
  导线名称 型号 载流量(A) 最大允许应力
  110KV母线 LGJ-25/4 252
  10KV母线 LGY-100×8单条平放矩形铝母线 1454 69000000Pa
  10KV电缆 3XZLQ-185普通粘性绝缘三芯(铝) 771

  表3-3: 断路器选择结果一览表

  安装地点
  型号
  额定电压
  (KV) 最高工作电压
  (KV)
  额定电流
  (A) 额定短路开断电流(KA)
  动稳定电流(KA)
  4秒后热稳定电流(KA)
  110KV出线 SW 110 126 1200 21 53 21
  110KV分段 SW6-110
  110 126 1200 21 53 21
  主变110KV侧
  SW6-110

  110
  126
  1200
  21
  53
  21
  主变10KV侧
  SN10-10III
  10
  11.5
  2000
  40
  130
  40
  10KV分段 SN10-10III 10 11.5 2000 40 130 40
  10KV馈线 SN10-10J 10 11.5 630 20 50 20

  表3-4: 电流互感器选择结果一览表

  安装地点
  型号 额定电流比2×600/5
  级次组合 额定二次负荷(Ω) 1秒后热稳定倍数
  动稳定倍数
  0.5级 1.0级
  主变110KV侧
  LCWD-10
  2×600/5
  0.5/D/D
  2

  75
  135
  110KV分段 LCWDL-10 2×600/5 0.5/D/D 2 75 135
  主变10KV LDJ-10 3000/5 0.5/D 0.4 0.6 50 90
  10KV分段 LDJ-10 3000/5 0.5/D 0.4 0.6 50 90
  10KV馈线 LDJ-10 630/5 0.5/D 0.4 0.6 50 90

  表3-5: 高压熔断器选择结果一览表

  安装地点
  型号
  额定电压(KV)
  额定电流(A)
  最大开断电流(KA) 额定断流容量(MVA)
  备注
  10KV侧电压互感器
  RN2-10
  10
  0.5
  50
  1000
  1000
  所用变压器 RN3-10/50 10 50 50 200
  10KV侧电容器 RN3-10/50 10 50 50 200

  表3-6: 电压互感器选择结果表
  安装地点 型号 数量 额定变比 额定容量(VA)
  0.2级 0.5级 1级
  110KV线路侧
  TYD-110
  6个 110000/√3、100/√3、100/√3、100

  50
  100
  10KV母侧
  VKI12
  2组 10000/√3、1000/√3、100/√3
  30
  90
  280

  表3-7 隔离开并选择结果一览表
  安装地点 型号 额定电压(KV) 额定电流(A) 动稳定电流(KA) 4秒热稳定电流(KA)
  110KV侧 GW4-110 110 1250 50 20

  表3-8 电容器选择结果表
  安装地点 型号 额定电压(KV) 标称容量(KVA) 标称电容μF
  10KV侧 BWY0.5-12-1 10.5 12 0.347

  表3-9 支柱绝缘子选择结果一览表
  安装地点 型号 额定电压
  (KV) 绝缘子高度(mm) 机械破坏负荷(kg)
  110KV侧 ZS-110 110 1200 1500
  10KV侧 ZL-10/4 10 160 2.4
  第四章 无功功率补偿
  一、补偿无功功率的必要性。
  无功功率的主要消耗者是感应电动机、变压器和电焊机等。它们都需要无功功率来建立交变磁场。无功功率除发电机是主要无功功率电源外,线路电容也产生一部分无功功率。但上述无功功率往往不能满足负荷对无功功率和电网对无功功率的需要, 需要加装无功补偿设备。例如,同期调相机、移相电容器等,它们都是无功功率电源,这里仅谈,用移相电容补偿无功功率,即无功补偿问题。无功电源不足,交流系统电压降低,从而损坏用电设备,严重的会造成电压崩溃,使系统瓦解而造成大面积停电,还会使电能损耗增加,效率降低,限制线路的输电能力,因而补偿无功功率是保证电力系统安全运行的重要措施。

  二、提高功率因数的补偿方法
  1、采用同期调相机,同期调相机主要是空载运行的同步电动机,在过励磁情况下输出感性无功功率。与采用移相电容器相比,有功功率的单相损耗较大,具有旋转部分,需专人监护,运行时有噪音,但在短路故障时较为稳定, 损坏后可修复继续使用。由于其容量较大, 一般用于电力系统较大的变电所中, 工业企业较少采用。
  2、采用移相电容器,与采用同期调相机相比,移相电容器有下列特点:
  A、优点
  (1)、无旋转部件,不需专人维护管理;
  (2)、安装简单;
  (3)、可以做到自动投切,按需要增减补偿量;
  (4)、有功功率损耗小;
  B、缺点:
  (1)、移相电容器的无功功率与其端电压的平方成正比,因此电压波动对其影响较大;
  (2)、寿命短,损坏后不易修复;
  (3)、对电流的稳定性差;
  (4)、切除后有残留电荷,危及人身安全。
  待设变电所要求补偿后功率因数达到0.9,而中间变电所负荷量不大,从技术性和经济性等综合考虑本所采用移相电容器补偿,详情请见计算书。

  三、电容器的补偿方式
  电容器的补偿方式的选择,首先要从减少大量无功功率的传输入手,其基本原则就是尽量使用户的无功负荷就地供应。工厂企业内部电容器的补偿方式,可分为个别补偿、分组补偿和集中补偿三种。
  1、个别补偿
  适用于低压网络,与单台用电设备装于同一回路,这种无功功率就地供应的方式,补偿效果最好,可以减少配电变压器的容量及配电线路的截面及其相应传输无功功率的有功损耗,但电容器的利用率低,常用于由较长线路供电、长期运行的容量电动机。
  1、 分组补偿
  电容器装设在车间变、配电室母线上,可提高电容器的利用率,但只能减少高压线路和配电变压器中的无功功率,而低压配电线路中的无功功率不能减少。
  2、 集中补偿
  电容器装设在工厂总降压变电所的母线上(一般装设在低压母线侧),这种补偿方式,电容器安装方便、运行可靠、利用率高。但不能减少工厂内部配电网络中的无功功率。
  综上所述,本变电所采用集中补偿的方式,分别装设在10KV母线两段侧。

  四、电容器的补偿容量的确定
  分别在低压母线的两侧并联电容器补偿,每侧补偿0.745MVAR,型号为TBB310-750/50
  接线方式:单Y。
  第五章 变电所的防雷保护及接地网设计
  一、避雷针的布置和保护范围
  避雷针是变电所屋外配电装置和所内电工建筑物防护直击雷过电压的主要设施,变电所避雷针布置应考虑以下几个方面的因素:
  1、 避雷针和保护范围应保护到站内各电气设备。
  2、 避雷针和保护范围和地下连接点至10KV设备与主接地网和地下连点,沿接地体的长度不得小于15米。
  3、 独立避雷针不应设在人经常通行的地方,避雷电针及其接地装置与道路口等的距离不宜小于3米。
  4、 电压在110KV以上和配电装置,一般将避雷器装在配电装置和构架上,35KV及以下和高压配电装置和构架或房顶不宜装设避雷针,因其绝缘水平很低,雷击时容易引起反击,另外在变压器的门型构架上不宜装设避雷针。这是因为门型构架距离变压器近,装设避雷针后,构架的集中接地装置距离变压器和金属外壳接地点在地中距离难以达到不小于15米要求。
  二、避雷器的选择和校验
  避雷器是发电厂、变电所防护雷电侵入波的主要设施,避雷器的选择和校验是以《交流电气装置过电压保护和绝缘配合》为依据的。
  由于氧化锌避雷器一般是无间隙,避免了间隙电压分布不均的缺点;在过电压下动作后无续流通过;不用串联火花间隙, 其体积小、重量轻、结构简单在运行中维护方便、使用寿命长,造价也低等优点比普通阀式,磁吹阀式避雷器具有优越的保护性能,而且目前也具有逐步取代其他类型避雷器的趋势,因此,待设变电所各级电压的设备都选用氧化锌型避雷器来防护雷电侵入波的危害,并对各级电压的避雷器分别进行选择的校验,详细的校验过程参见计算书。

  表5-1: 避雷器选择果表

  安装地点
  型 号 避雷器额定电压(KV) 持续运行电压(KV) 雷电冲击8/20µs(10KA),峰值(KV)
  标称放电电流
  (KA) 直流1mA参考电压(KV)
  数量
  110KV母线侧 Y10WR-108/268
  108
  84
  268
  10
  157
  2组
  主变压器中性点 Y1.5WR-72/186
  72
  58
  186
  1.5
  103
  2组
  10KV母线侧 Y5WZ-17/45
  17

  136

  45
  5
  24
  2组

  三、接地装置
  1、接地
  电气设备和线路的某些部分通过接地装置与大地紧密连接起来,是保证供用电系统安全运行的主要措施之一。接地装置由接地体和接地线两部分组成。接地类型如下:
  1、工作接地 为了保证电气设备正常和事故情况下能可靠工作而进行的接地,如发电机、变压器中性点接地。
  2、保护接地 是将电气设备正常运行中不带电的金属部分与接地装置间作良好的金属连接,防止在电气设备绝缘损坏外壳带电时发生人身触电事故。
  3、冲击接地 即防雷装置的接地。由于雷电流的幅值大,作用时间短暂,故接地装置在冲击电流作用下呈现的电阻值与工频接地电阻值有所差别。

  2、接地网
  为了降低接触电势和跨步电势,使其不超过规定值。
  发电厂、变电所的接地装置在充分利用了自然接地体之后,还应装置人工接地体。
  一般情况下,发电厂、变电所接地网中的垂直接地体对工频电流散流作用不大。避雷针、避雷器和避雷线附近加强集中接地和散泄雷电流之用。
  接地网的外边缘应闭合,做成圆弧形,圆弧的半径不宜小于均压带间隔的一半。接地网内应敷设水平均压带。接地网的埋深一般采用0.6米或0.8米。
  接地网的边缘经常有人出入的走道外,应铺设砾石、沥青路面或“帽檐式”均压带
  综上所述,站区敷设水平接地体为主,辅以垂直接地极,主地网用Ф50镀锌圆钢,若土壤电阻率高,为满足接地电阻要求,可考虑外引接地网及深井接地极并施加降阻剂。
  第六章 变电所电气总平面布置
  变电所内设备布置型式采用常规户外设备单列中型式:110KV设备及主变压器布置在室外。由于两电源点都位于所址北侧,考虑110KV进线方便的需要,110KV开关布置在所内北面。同时,负荷在变电所的东侧,10KV配电装置亦设在变电所内的东边,便于出线。而中央控制室和辅助厂房在南边,门口正面对着公路,方便运输。变电所电气总平面布置详见附图:“变电所总平面布置图”;变电所接地网布置详见附图:“接地网布置图”。

  设计参考资料:
  《电力工程设计手册》——水利电力出版社
  《电气设备选择施工安装设计应用手册上册》——中国水利水电出版社 刘宝林主编
  《发电厂电气部分》——西安电力学校 卫斌编
  《电力工程设备手册》——中国电力出版社
  《无间隙氧化锌壁雷器选择手册》——中国电力出版社

上一篇:陕西省医学论文

下一篇:磁共振技术论文