毛刺检测论文
毛刺检测论文
术语一、金属铸造、铣切、电镀术语。毛刺
veining[1]金属件表面出现余屑和表面极细小的显微金属颗粒,这些被称为毛刺。毛刺越多,其质量标准越低。钢材表面缺陷之一,表现为冷切、热锯或火焰切割的钢材端部有不齐的飞边,焊管时焊缝处有挤出的多余金属。冷切产品端部毛刺的厚度取决于刀刃间的缝隙。一般产品允许有一定高度的毛刺存在;但焊管的内外毛刺必须刮除。毛刺产生的原因是:(1)剪切刀刃变钝,间隙过大;锯片迟钝,或安装不当;(2)冲头磨损或安装不当;(3)火焰切割操作不当;(4)焊接制度不规范。防止和消除毛刺的办法有:(1)正确安装剪切、锯切和冲孔装置;(2)及时更换磨损的刀刃、锯片和冲具;(3)加强产品切割操作的管理;(4)调整焊接制度.一般产品允许有一定高度的毛刺存在;焊管的内外毛刺必须刮除.类型[1]
毛刺类型
描述
1
串珠状毛刺
呈柱状或水滴状,金属表面光亮,附着牢固
2
碎土状毛刺
呈细碎土状,毛刺附着,较容易去除
3
碎玻璃状毛刺
呈碎玻璃状,边缘锋利。部分高强度附着,切割表面的下侧毛糙
4
细齿状毛刺
呈细齿边缘锋利附着在切割面下侧
大家知道什么是毛刺?有没有什么评判标准?
(一)毛刺的分类
毛刺是工件在切削力作用下产生晶粒剪切滑移、塑性变形,使材料被挤压、撕裂,导致零件表面或交接处出现的多余材料。塑性变形区(剪切区)未深入切削表面时,工件表面就不会产生毛刺,否则就会产生毛刺。毛刺的种类按其不同材料、结构形状、加工方法所形成的毛刺分类也不同。分类方法具体内容毛刺成形情况挤裂、弯曲、撕裂和切断毛刺加工方法车、镗、铰、铣、拉、刨、插、滚和磨削毛刺横剖面形状长方形、三角形、椭圆形及其它形状毛刺尺寸大毛刺、小毛刺和微小毛刺毛刺的形状块状毛刺、鳞状、条状和坑洼状毛刺.
(二)毛刺的控制和去除
根据毛刺产生的机理,采取以下措施防止切屑与刀具发生黏结或变形强化,即可能避免毛刺的产生。
①提高刀具前刀面的光洁度;
②增大刀具的前角;
③减少切削厚度;
④对工件适当热处理,减少塑性变形;
⑤采用抗黏结性能好的切削液;
⑥根据零件的塑性,适当调整切削速度。实际工作中,选择适当的去毛刺方法,会提高产品质量,降低成本。否则不但影响生产效率和产品质量,还会增加产品成本。具体地说,有些产品较粗糙,只要用普通刷子或锉刀、砂纸打磨一下即可。有些产品要求较高,由于毛刺较牢固,不经过切削加工是很难脱落的。而高精产品,特别是安全性要求特别高和价值极高的产品,如用于飞机、卫星等的产品就要求彻底清除毛刺,即使非常牢固的毛刺也要经过切削加工清除,毛刺脱落会造成不可估量的损失。
(3)毛刺的检测方法及选择的原则目前还没有统一标准来对毛刺和棱边进行评价,设计时也很少标明对毛刺和棱边的具体要求。详细的检测方法详见:
氧传感器检测与分析论文
[编辑本段]氧传感器的作用 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。
ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。 [编辑本段]氧传感器的组成 主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加 热传感器,使能精确检测氧气浓度。
在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。
应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。 [编辑本段]氧传感器的工作原理 氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。
氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。当套管废气一侧的氧浓度低时,在电极之间产生一个高电压(0。6~1V),这个电压信号被送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。 [编辑本段]氧传感器的杂波分析 概述
1.为什么要研究氧传感器波形上的杂波信号呢?
这是因为杂波可能是由于燃烧效率低造成的,只要上流动系统不是处在正确的工作状态下,催化器就不能被精确地测试,氧传感器波形的杂波能警告各个发动机气缸性能的下降,这时废气诊断是最主要的。因为它能发现催化器转换效率的降低和个别气缸的性能降低。杂波信号也妨碍燃油反馈控制系统控制器的正常运行(在发动机控制电脑中的反馈程序运行),“燃油反馈控制系统控制器”专门指起作用的软件程序(从现在起,称之为“反馈控制器”),它是接受氧传感器电压信号并计算正确的即时喷油或混合气控制命令的程序。 通常,反馈控制器程序不是设计成有效地去处理由非正常的系统操作和燃油控制命令所产生的氧传感器信号频率。杂乱的高频变动信号能使反馈控制器失掉控制精度,或失去“反馈节奏”。这里有几个影响,首先,当反馈控制器的操作精度受影响时,燃油混合比就会超出催化剂窗口,这将影响转换器的工作效率和废气排放。其次,当反馈控制器的操作精度受影响时,发动机性能也将受到影响。 杂波可以成为失去控制的废气进入催化剂的判定性指示,经常可发现当杂波存在时,进入催化剂的废气便没有了正确的混合气空燃比,理解氧传感器波形上的杂波对废气排放的修理诊断是很重要的。在一些情况下,杂波是催化转换效率减少的明显信号,随后就是尾气排放超出标准。此外,氧传感器波形上杂波的解释、对发动机性能或行驶能力诊断是一个有价值的工具。杂波是燃烧效率从一缸到另一个缸不平衡指示。对氧传器波形上的杂波的解释和理解对有效地运用氧传感器信号修理验证也是很重要的。 在氧传感强器波形上的杂波表明排气变化从一个缸到另一个缸的不平衡,或者是比较特别地从个别的燃烧过程中没有得到较高的氧的含量。大多数氧传感器当工作正常时能够比较快的反馈各个燃烧过程所产生的电压偏差。杂波的信号限制越大,从各个燃烧过程测得氧成分的差别就越大,在不同行驶方式下看到的杂波不但对确定稳态和瞬态废气试验失效的根本原因是重要的,而且也是有效的可驾驶性能诊断的判断依据。 在加速方式下与BC的峰值毛刺形成一对一废气波形的氧传感器信号杂波是一种非常重要的诊断信号,因为它意味着在有负荷的情况下点火出现断火现象。通常,杂波幅度越大。在排气中氧传感器的成份就越多,所以杂波是由于进入催化器的反馈气平均氧含量升高造成氧化氮排前增加的指示,在浓氧环境中(稀混合气)催化器中的氧化氮不能被减少(化学地)。 综上所述,已知一些反馈类型系统完全正常的氧传感器波形上的杂波信号对废气或发动机性能不产生明显影响。对于少量的杂波可以不去管它,而大量的杂波是重要的。这正说明诊断是一种艺术,要学会判断什么是正常的杂波,什么不是就需要实践,而最好的老师是经验,学习的最好方法是从观察不同行驶里程和不同类型的汽车上观察氧传感器波形。理解什么是正常的杂波,什么是不正常杂波,对有效地进行废气排放修理以及行驶能力诊断是非常有价值的,它值得花时间去学习。 对于大多数普通系统,一个软件波形是绝对有价值的,对正在控制着的系统拥有一张氧传感器参考波形,能判断出什么样的杂波是允许的、正常的,而什么样的杂波是应该关注的,关于好的杂波标准是:如果发动机性能是好的,则应该没有真空泄漏,废气中的碳氢(HC)化合物和氧含量是正常的。 在本部分的试验中将尽可能地给出大量的资料,以便去理解在这个训练中正好有充分的时间和空间来包括所有的关于这个的课题。
2.杂波产生的原因
氧传感器信号的杂波通常由以下原因引起:
A.缸的点火不良(各种不同的根本原因,点火系统造成的点火不良,气缸压力造成的点火不良真空泄漏和喷油嘴不平衡造成的点火不良);
B.系统设计,例如不同的进气管通道长度等等;
C.由于发动机和零部件老化造成的系统设计问题的扩大(由于气缸压力不平衡造成的不同的进气管通道长度问题的扩大);
D.系统设计,例如不同的进气管通道等等。
3.由点火不良气缸引起氧传感器波形的杂波,发动机的点火不良是如何引起杂波呢?
在点火不良状态下波形上的毛刺和杂波由那些燃烧不完全或根本不燃烧的单个燃烧时间或系列燃烧事件引起,它导致在气缸中有效氧化部分被利用,剩下的多余氧走到排气管中,并经过氧传感器。当传感器发现排气中氧成分变化时,它就非常快地产生一个低压或毛刺,一系列这些高频毛刺就组成称之为“杂波”东西。
4.产生毛刺的不同点火不良类型
a)点火系统造成的点火不良(例如:损坏的火花塞、高压线、分电器盖、分火头、点火线圈或只影响单个气缸或一对气缸的初级点火问题)。通常点火示波器可以用来确定这些问题或排除这些故障);
b)送至气缸的混合气浓造成的点火不良(各种可能的原因)对给定的危险混合气空燃比例约为13:1;
c)送至气缸的混合气过稀造成的点火不良(各种可能的原因)对给定的危险的混合气空燃比例为17:1;
d)由气缸压力造成的点火不良,它是由机械问题造成的,它使得在点火前燃油空气混合气的压力降低,并不能产生足够的热,这就妨碍了燃烧,它增加了排气中的氧含量。(例如气门烧损,活塞环断裂或磨损,凸轮磨损,气门卡住等);
e)一个缸或几个缸有真空泄漏造成的不良,这可以通过对所怀疑的真空泄漏区域(进气叶轮、进气歧管垫、真空管等)加入丙烷的方法来确定,看示波器的波形什么时候因加丙烷使信号变多,尖峰消失,当与一个缸或几个缸有关的真空泄漏造成进入气缸的混合气超过17:1时,真空泄漏造成的点火不良就发生了。
f)就喷油嘴喷射不平衡造成的点火不良仅在多点喷射发动机中,一个缸的油浓或稀混合气造成点火不良是因为喷油时每个喷油嘴实际喷射的油量太多了或太少(喷油嘴堵塞或卡住)造成的。当一个气缸或几个汽油中的混合气空燃比超过危险时17:1就产生了稀点火不良,低于13:1也产生浓点火不良,这就造成了喷油嘴喷油不平衡产生的点火不良。 通常,可以用排除由点火系统造成的点火不良、气缸压力的点火不良和单个气缸真空泄漏造成的可能性来判断。喷油不平衡。可以用汽车示波器排除自点火系统和气缸压力造成的点火不良(用发现点火系统造成的点火不良和动力平衡气缸压力问题)。排除与个别气缸有关的真空泄漏,通常采用往可能产生真空泄漏的区域或周围加丙烷(进气歧管、化油器垫等)的方法,同时像从前说过的那样,从示波器上观察氧传感器信号波形的方法达到目的。通常,在多点燃油喷射发动机,如果不能证实a、b、和c类型造成的点火不良,那么不平衡造成氧传感器波形中的严重杂波的可能性就可以确定。 判断氧传感器的杂波的规则 如果氧传感器的信号上有明显的杂波,这种杂波对所判断的那一类系统是不正常的话,通常这将伴随着重复的、可测试出的怠速时的发动机故障(例如:每次气缸点火的的爆震)。通常,如果杂波是明显的,发动机的故障最终将与波形上的各个尖峰有关,没有明显的伴随着发动机故障的杂波是不容易消除的杂波(在某些情况下这是正确的),也就是说当在波形上产生杂波的个别尖峰最终与发动机故障无关时,那么在修理中想要排除它的可能性很小。 综上所说,判断杂泼的规则是:如果可断定进气歧管无真空泄漏,排气的碳氢化合物(HC)和氧的含量正常,发动机的转动或怠速都比较平衡的话,那么杂波或许是可以接收的,或是正常的。
许多汽车燃油反馈控制系统中,不但安装一个氧传感器,福特3.8L V6型从1980年制造出来的就装有两个氧传感,为了适应不断加强的EPA的废气控制要求,使用多个氧传感器的系统数量在不断增加。在1988年和更新的汽车上氧传感器的数目在连续地增加。此外,从1994年起一些汽车在催化器前和后各装一个氧传感器,这种结何可以用装在汽车上的OBD-Ⅱ系统来检查催化器的性能,在一定情况下,还可以增加对空燃比控制的精度。在任何情况下,由于氧传感器信号快使其成为最有价值的发动机性能诊断工具之一,氧传感器越多,对检修技术人员越有好处。
通常,燃油反馈控制系统的工程逻辑决定,氧传感器在靠近燃烧室的地方,燃油控制的精度越高,这主要是由于排气空气气流的特性确定的:例如气体的速度,通道的长度(气体瞬时太滞后)和传感器的响应的时间等等。许多制造商在每个气缸的每个排气歧管底下安装一个氧传感器,这样就能判定哪一个气缸有问题,这就排除了诊断失误的可能性,在许多情况下靠排除至少一半潜在有问题气缸来减少诊断时间。 用双氧传感器进行催化器监视 一个工作正常的催化转换器,配上正常控制燃油分配系统的燃油反馈控制系统,它可以保证最安全的将有害的排气成份变为相对无害的氧化碳和水蒸气,但是,催化器会因过热而受损(由点火不良等等),这导致催化剂表面减少和孔板金属烧结,这两点都将使催化器永久损坏。
当催化剂失效时就能知道,对环境和废气系统修理时,技术人员是十分重要的。
OBD-Ⅱ诊断系统的出现,对环境和催化剂的随车监视系统、OBD-II监视系统依据好或坏的催化剂的氧化特征作精确的检测手段。在稳定运行时,催化剂后面好的氧传感器(热的)应比催化剂前的任何一个氧传感器的信号波动少得多,这是由于在转换碳氢化合物和一氧化碳时正常运行的催化剂消耗氧化能力,这就减少了后氧传感器信号的波动。
后氧传感器的信号波动比氧传感器的信号波动要小的多。也要注意当催化剂“关断”(或达到运行温度),催化器开始储存和用氧做催化转换时,信号由于在排气中氧越来越少而升高。
当催化剂完全损坏时,催化剂的转换效率、以及它的氧储存能力丧失,因此,催化剂后部的排气中氧的含量如果不完全的话,则十分接近催化剂前部的排气中的氧的含量。 [编辑本段]氧传感器的检测 装有排气氧传感器的电控燃油喷射发动机,如果在运转中出现怠速不稳、加速无力、油耗增加、尾气超标等故障而供油、点火装置又无其他故障,那么极有可能是氧传感器及相关线路出了问题。
大多数发动机的电控系统都有自检功能,当氧传感器或相关部位发生故障时,电脑会自动记下故障内容,维修人员只需用专门的解码器读出故障代码即可发现问题所在。但如果没有专用设备怎么办呢?这里有几个方法可以很快检查出氧传感器的好坏。
如果怀疑怠速不稳或加速不良等故障是氧传感器引起的,检修时只需拔下氧传感器接头,如果发动机的故障消失,则说明氧传感器已经损坏,必须更换,如果发动机故障依旧,那么还要从其他地方找原因。
利用高阻抗的电压表也可以检查出氧传感器的好坏。把电压表并联在氧传感器的输出端,正常情况下,电压应在0-1V之间变化,中值在500mV左右,如果输出电压长时间保持某一数值而无变化,则表明氧传感器已经损坏。
实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。氧传感器的非正常损坏大多是由于燃油中含铅量超标造成的。这一点,驾驶装有三元催化装置汽车的司机务必要加以重视. [编辑本段]氧传感器的表征与故障 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。
氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。
氧传感器的常见故障
1.氧传感器中毒
氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。
另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。
2.积碳
由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。
3.氧传感器陶瓷碎裂
氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。
4.加热器电阻丝烧断
对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。
5.氧传感器内部线路断脱。
6氧传感器外观颜色的检查
从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。如有破损,则应更换氧传感器。
通过观察氧传感器顶尖部位的颜色也可以判断故障:
①淡灰色顶尖:这是氧传感器的正常颜色;
②白色顶尖:由硅污染造成的,此时必须更换氧传感器;
③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;
④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。
氧传感器的作用
电喷车为获得高排气净化率,降低排气中(CO))一氧化碳、(HC)碳氢化合物和(NOX)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14/:7)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。
ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。
主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使能精确检测氧气浓度。
在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。
应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。
钳工高级技师职称论文(2)
钳工高级技师职称论文篇二
传统钳工与现代工业
摘 要:随着现代工业企业的高速发展,技术工人的大量缺乏,会成为进一步发展的瓶颈,现代工业造就了大量的岗位紧缺,特别是技术型工人的缺失,作为一名工作了多年的实习指导教师,我在这里谈的是如何在实习过程中来妥善解决现代工业与传统钳工之间的矛盾。
关键词:传统 钳工 实习
中图分类号:TG93 文献标识码:A 文章编号:1672-3791(2012)10(a)-0067-02
随着现代工业企业的高速发展,技术工人的大量缺乏,会成为进一步发展的瓶颈,现代工业造就了大量的岗位紧缺,特别是技术型工人的缺失,在无锡地区,虽然近年来职业教育发展较快,但各类制造业的空缺岗位与学校毕业生的比例差距仍然很高,特别是一些传统工种,如现在的钳工专业,毕业生虽能应聘进企业,但不能尽快适应企业的需求,而这些学生,往往是在职业学校进行了专业的学习和钳工加工的技能训练,达到了劳动部门规定的技能等级,获得相应的资格证书,那为什么不能尽快适应工厂的岗位需要呢?这就是技能标准与厂矿实际需求的矛盾,也是当今职业类学校面临的困境:一方面,学生要通过国家技能资格证书的鉴定—— 应试教育;另一方面要迅速适应企业技能需求—— 素质教育。这些矛盾,是需要教育部门和劳动部门来解决的,作为一名工作了多年的实习指导教师,我在这里谈的是如何在实习过程中来妥善解决现代工业与传统钳工之间的矛盾。
首先,我们来分析传统钳工的应试教育:从教材上我们可以看到,从20世纪60年代到现在,钳加工工艺基本没变,还是按部就班的从钳加工最基本的技能开始,一环套一环,这些工艺已经经过历代人的实践证明,没有丝毫的缺陷,可以说是最佳工艺了,实习教材也按照国家技能标准,从划线、錾削、锯割、锉削、孔加工等来安排实习工件,难度也从初级到中级到高级转化。当然,学生在实习期间按照此教材在老师的指导下,都能顺利通过中级以上技能的考核,获得相应的中级资格证书,但是一到工厂,就碰到的新的问题。
现代工业,基本上实现了机械化和半自动化,个别企业已经是自动化生产了,像传统钳工加工的那部分已为机械加工所代替,如:錾削、锉削加工由刨削、铣削加工所代替,精度高的可以磨加工,随着数控机械的投入使用与普及,还可以通过数控设备来加工(如线切割、加工中心加工等),精度等级和劳动效率更高,这是传统钳工手艺无用武之地了。大量的企业要的是技能型的装配钳工,而装配钳工技能的考核还是老样子,考试以镶配来定等级。我国《职教法》明确规定,职业教育全面推行学历证书和职业资格证书并重的“双证”制度。职业资格证书是具有从事某一职业所必备的学识和技术能力的证明,是用人单位招聘毕业生的重要依据。一般说来,关于学识内容较易掌握,而技能要求不容易达到。在实践教学中可以按照就业岗位的需求,按岗位技能考核标准,集中进行技能训练和能力培养,确保通过职业技能考核。
那么传统钳工真的已经没用处了?其实不是,相反,在工厂中用途更大,现代企业需要大批高素质的管理人才和技术人才,更需要大批高素质的具有一技之长的技工。在学校掌握了一定的理论知识,有一定的后劲,进步很快,经过企业生产一线不长时间的锻炼,可以很快进入角色,独当一面。
要如何独当一面,这就是在钳工实习中要解决的问题。
职业学校的钳工实习,不光是为了应付国家技能的考核,更重要的是通过钳工实习来了解并掌握一些在工厂中要使用到的东西,在踏上工作岗位后能迅速适应岗位所需的技能要求,通常所说的岗位技术含量。下面通过实例来说明一些问题。
以钳工初级加工中最典型的凹凸镶配为例,如图1。
这是凹凸镶配件,技术等级是初级中的三级,也是钳工实习中学生要做的。从技术要求上看其配合间隙≤0.05mm,错位≤0.08mm在加工过程中,根据加工精度与要求,采取有效的加工工艺和测量手段,基本上能保证配合间隙和尺寸要求。就是其中一两个尺寸做错了也没多大影响,只要60分就是及格。学生在加工中以锉削为主要加工方法,结合锯割钻孔等去处大部分加工余量,关键是面锉平锉垂直平行,尺寸在公差范围内就可以了,基本知识点就是对称度的加工与测量,而加工工艺也就是围绕配合间隙、对称度来安排的。做到这些,就满足了该工件所达到的技能要求。但在实际生产中,也生产这凹凸镶配,那么,这不仅仅是靠钳工来加工的,就是做个样板,也不一定有钳工来完成。它可以用机械生产来保证所有的技术要求,加工质量也能得到保证。而钳工在里面用到的只是去毛刺和装配测量检验工作了,去毛刺工种钳工技术含量特低,只有测量装配检验才发挥应有的水平了。凹凸镶配通过机加工完成后,要用一定的测量手段来测量是否合格,合格的程度怎样以及怎样装配能达到最佳效果,这就要求学生在实习过程中也涉及到这方面的东西。在实习工应该这样引导学生。
一是:加工过程中面的基本形位公差保证,树立尺寸观念。
轴颈类尺寸大为次品,小了为废品,孔类尺寸小为次品,大为废品,也就是说尺寸越加工越离标准远的为废品,而次品也就是要返工后才有能成为正品的。特别是关键尺寸不能超差。而在尺寸允许范围内也存在质量隐患,如尺寸为最大或最小极限尺寸时,在使用过程中,因磨损等原因而迅速失效,达不到规定的使用期限,这也是要不得的。
二是用正确的工量具和工艺手段来检测尺寸与形位公差。
如凹凸镶配,要测量凸件的尺寸,就必须对凸件有个全面的了解。每个面都与基准有位置关系,这可以用刀口角尺来测量透光程度,也可以用万能量角器来测量具体的角度,还可以用正弦量块和杠杆百分表来测量,所以,不同的精度等级要用不同的测量手段来测量,这是在实习中要灌输的,而不是一成不变的看到垂直度就用刀口角尺来测量。
还有对称度的测量,在加工中测量对称度是按照加工次序精确计算和间接测量来保证的,但加工完成后测量的方法就不能套用加工中的方法了,因为测量基准已经加工缺损,很难测量—— 原因之一还有学校实习设备不够多,特别是测量的量具,最佳方法之一就是用深度千分尺直接测量两边的深度后取差的绝对值就是所要测量的对称度了,当然还有用百分表来测量,还有就是投影测量仪来测量等等,这些方法多要在实习中教给学生,让学生有个感性认识,那么,就教会了学生在不同环境下的生存方式,而不会碰到一些没见过的测量手段而束手无策了。这就是所说的开拓视野、见多识广、举一反三的道理。
还有平行度和表面粗糙度,平面度等等,在具体测量中根据实际使用场合来综合考虑,特别是表面粗糙度和平面度,它们是相互影响的,当然还会影响到位置度。在教学中是考目测来完成,很难有个准确的数据,根据公差配合中所列举的测量手段,也要讲给学生们听,再一次巩固已学到的知识,触类旁通。把抽象概念转化为具体数据,这样学生好理解好掌握。
三是合理装配。
虽然此工件为简单的凹凸镶配,但也是一个配合件,也存在着装配工艺问题。配合面有间隙,属间隙配合。一般间隙配合在机械中是活动部件,有间隙就存在泄漏,在密封件(如液压元件)中就必须考虑泄漏的问题。这些在单钳工实习中学生是很难能联系起来的。在生产中是用整体综合质量来体现的,不是简单的某个尺寸不对就能马虎过关的,往往一个尺寸错误就引来整个工件报废。就是所有单个工件尺寸正确,配合后的质量也千差万别。所以在实习中要让每个学生明白这样的事实:自己完成的工件是所有工件中的一个,在大批大量生产中,要能互换或分组互换,这就培养学生整体质量意识。当然,在全部完工后再分开打乱,让学生来检测后装配成最好的配合件。这样就确定了解在加工中每一道工艺工序都是相互关联的。
学生完成修配的工作实际上也模拟了模具加工的过程,就相似于冲裁模。间隙大小应该相同才能落料冲裁正确。特别是清角部分就引起重视,一般没有工艺孔,但不能过清,不然有应力问题存在,在生产中会引起开裂等损坏现象。但圆角又不能过大,否则也不能落下规则的料等等。
总之,传统的钳工实习必须灵活变革,既掌握钳工基本操作技能,又与现代化生产实际挂钩,强化装配工艺研究,通过引导,深刻了解钳加工工艺,在走上工作岗位后,迅速适应岗位工种,不管是质量检验员,还是装配工,或者是维修工,更高级的模具钳工,都能用学到的知识技能来胜任,这才是钳工实习发展和努力的方向。
看了“钳工高级技师职称论文”的人还看:
1. 化工钳工技师职称论文
2. 化工钳工技师职称论文(2)
3. 技师竞聘报告范文3篇
4. 钳工技师培训心得体会
5. 模具钳工技术论文
窗口技术在CT检查中的应用体会论文
窗口技术在CT检查中的应用体会论文
摘 要: 目的:研究CT检查中窗口技术的具体应用方法。方法:对CT扫描的516例患者扫描结果进行总结分析,按实际情况对窗宽和窗位参数进行调查,以便建立最佳的影视图像。结果:在不同部位分别采用不同的窗宽和窗位,所表现出的影像也各不相同。结论:熟练的窗口技术在CT检查中,具备很高的临床应用价值。
关键词: 窗宽;窗位;CT检查;应用研究
CT影像不同于普通的X线影像,它是一种数字化的影像,医疗应用中已经相当普遍。而窗口技术即是分析CT影像的一种重要手段,利用窗宽和窗位调节出清晰的医学图像,反映出器官组织的结构以及毗邻关系,以便采取恰当有效的医学方法进行治疗,是医学判断的重要依据。所以,利用窗口技术呈现出清晰准确的医学图像,是CT检查的关键。
1 临床资料
选取我院2009年5月~2010年5月间接受CT扫描的患者共计516例,其中男331例,女185例,年龄1 d~87岁(新生儿共计19例)。接受扫描的主要部位有:头颅,眼眶、颌面部,喉、颈部,胸部,腹部,脊柱和四肢,盆腔。扫描设置采取SOMATO DRH以及SOMATOM Balace,扫描软件使用MSO5,采取Vc30、Vc40、Vc47的扫描模式,同时根据患者的具体情况和治疗需求,灵活地加以适当调整,以便建立起最为准确有效的图像。
2 结果
在不同部位分别采用不同的窗宽和窗位,所表现出的影像也各不相同。因此,要想获得最有医疗价值的影像,必须根据实际情况加以适当调整,以便掌握更加详细的病程资料,灵活采取最为有效的治疗措施[1]。本研究中具体设定如下所示。
2.1 头颅:脑组织的窗宽在80~100 Hu之间,窗位设定在35~40 Hu之间。如果脑垂体或者蝶鞍区发生病变,窗宽改设为200~250 Hu,同时窗位改设为45~50 Hu;而脑出血患者的设定为窗宽200~300 Hu,宽位则为60~100 Hu,以便更加清晰地检测病灶。
2.2 眼眶、颌面部:窗宽的设定是300~400 Hu,窗位则为30~40 Hu;若要观察骨骼,窗宽改为200~300 Hu,窗位改为400~450 Hu。对软组织细节进行观察研究的时候,采取窄窗的形式,依据软组织的密度来设置窗位。
2.3 喉、颈部:一般情况下,窗宽设置为300~350 Hu,窗位为30~50 Hu。
2.4 胸部:常规的胸部CT检查有纵格窗和肺窗两种查看方式。纵隔窗可以清晰明了地观察到心脏和大血管的具体位置,同时还可以看到淋巴结大小、肿块位置及其与周围组织的关系,其设定为窗宽300~500 Hu,窗位为30~50 Hu。肺窗观察的设置则为窗宽1 300~1 700 Hu,窗位为600~800 Hu,如果观察的对象是肺血管或者肺裂,可以将窗宽适当调窄、将窗位适当降低。此外,如果采用纵隔窗与肺窗相结合的双窗技术,可以对胸腔有更加清晰、更加立体的观察,获得更为详尽的病征资料。
2.5 腹部:通常设置窗宽为300~500 Hu,窗位为30~50 Hu。在肝和脾的CT检查中,窗宽和窗位灵活加以修改,分别为100~200 Hu、30~45 Hu;检查肾脏时,比较常用的窗宽设置是200~300 Hu,窗位则是25~35 Hu;若发生病变的是胰腺,那么窗宽和窗位分别设置为300~500 Hu、35~50 Hu,窄窗设置分别是120~150 Hu、30~40 Hu。
2.6 脊柱和四肢:一般对脊柱进行扫描时,脊椎周围的软组织也会得以呈现,窗宽通常设置成200~350 Hu,窗位设成35~45 Hu。骨窗的窗宽和窗位分别是800~2 000 Hu、250~500 Hu。
3 讨论
不同部位使用不同窗宽窗位,能较充分反映解剖内容和病灶影像表现,头颅:脑组织窗宽设定为80~100 Hu,窗位为30~40 Hu,垂体及蝶鞍区病变窗宽宜设在200~250 Hu,窗位45~50 Hu,脑出血患者可改变窗宽位80~140 Hu,窗位30~50 Hu,脑梗死患者常用窄窗60 Hu,能提高病灶的检出率,清楚显示梗死及软化灶,颌面部眼眶窗宽定为150~250 Hu,窗位30~40 Hu,观察骨骼时窗宽150~2 000 Hu,窗位400~450 Hu,喉颈部、鼻咽、咽喉部的窗宽和窗位常设在300~350 Hu和30~50 Hu,能满足该部位的`解剖和病灶显示,胸部:常规胸部CT检查分别用纵隔窗及肺窗观察,纵隔窗可观察心脏、大血管的位置,纵隔内淋巴结的大小,纵隔内肿块及这些结构的比邻关系,设定纵隔窗可用窗宽300~500 Hu,窗位30~50 Hu,肺部窗宽1 300~1 700 Hu,窗位-600~-800 Hu,在上述基本窗宽的基础上,若观察肺裂和肺血管,可调窄窗宽和调低窗位,对肿块形态,分叶,胸膜凹陷征,毛刺征增的观察肺窗比纵隔窗更为清晰,腹部:腹部检查常设定窗宽为300~500 Hu,窗位30~50 Hu,肝脾CT检查应适当变窄窗宽以便更好发现病灶,窗宽为100~200 Hu,窗位为30~45 Hu,肾脏因含水量较多,检查时常用窗宽200~300 Hu,窗位为25~35 Hu,胰腺一般为300~350 Hu,窗位为35~50 Hu,窄窗120~150 Hu和30~40 Hu,脊柱及四肢:常规脊柱扫描显示脊椎旁软组织,窗宽200~350 Hu,窗位35~45 Hu,骨窗为窗宽800~2 000 Hu,窗位250~500 Hu,骨的CT值多在1 000 Hu左右,肌肉为40 Hu左右,脂肪多为-50 Hu以下。
CT影像可以人为地进行调制。但对其进行调制时,必须具备明确的目标。对不同患者采取不同部位或者不同组织的检查时,需要对窗宽和宽位进行合理的调节。如果窗口技术能够达到正确的理解、熟练的掌握,就能够利用窗口技术获得清的CT影像,为医疗诊断提供明确的信息和判定依据[2]。窗宽以及窗位,指的是采取灰阶的软件功能,把灰队范围加以调节,使人类肉眼可以观察。它是相对于CT值的全体范围而言的,窗位显示的是影像CT值的中心,与影像显示的亮度和具体位置密切相关;而窗宽则表示对窗位进行选定的灰阶范围,根据大小分别适用于较大部位或者软组织的观察。双窗是现阶段很多CT都具备的一种功能,它指的是把两个窗宽、窗位各不相同的影像同时在CRT上显示出来,或者拍摄到同一张胶片上,方便两个不同影像间的对比研究和病理诊断,在困难病例的病理诊断当中,其结果是一份相当有效的补充资料。
目前,很多CT机都设置有脑窗、肺窗、腹窗等固定窗,方便不同组织的检查。但是不同患者之间在年龄、病程过程等方面存在差异性,其组织结构也不尽相等,另外,在不同时期、不同厂家生产的不同设备,其性能方面也会存在一定的差别[3]。因此,要想照好CT片,还必须熟练地掌握好调查技术,根据患者的具体情况进行人为的合理判断,充分发挥出CT检查定位、定量、以及定性诊断的优势,避免因为不恰当的窗宽设置和不合理的窗位调、导致病变被忽视或者遗漏的现象发生,从而能更好地为医疗服务[4]。
4 参考文献
[1] 苏友恒,邱丹红.窗口技术在CT检中的应用体会[J].实用医学杂志,2007,14(5):560.
[2] 郑粤军.窗口技术在CT检中的应用体会[J].山西医药杂志,2006,35(6):523.
[3] 莫瑞嘉.CT窗口技术的选择与应用[J].中华现代影像学杂志,2005,2(1):93.
[4] 鲁书琴,田素良,金克斯,等.CT检查硬膜外血肿窗口技术的灵活应用与注意事项[J].现代医用影像学,2010,19(2):101.
上一篇:航空通信毕业论文
下一篇:论文查重是谁害的