欢迎来到学术参考网
当前位置:发表论文>论文发表

核酸研究论文

发布时间:2023-02-23 23:34

核酸研究论文

按研究问题的大小不同可以把毕业论文分为宏观论文和微观论文。凡届国家全局性、带有普遍性并对局部工作有一定指导意义的论文,称为宏观论文。它研究的面比较宽广,具有较大范围的影响。反之,研究局部性、具体问题的论文,是微观论文。它对具体工作有指导意义,影响的面窄一些。
另外还有一种综合型的分类方法,即把毕业论文分为专题型、论辩型、综述型和综合型四大类:
1.专题型论文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。如本书第十二章例文中的《浅析领导者突出工作重点的方法与艺术》一文,从正面论述了突出重点的工作方法的意义、方法和原则,它表明了作者对突出工作重点方法的肯定和理解。
2.论辩型论文。这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。如《家庭联产承包责任制改变了农村集体所有制性质吗?》一文,是针对“家庭联产承包责任制改变了农村集体所有制性质”的观点,进行了有理有据的驳斥和分析,以论辩的形式阐发了“家庭联产承包责任制并没有改变农村集体所有制”的观点。另外,针对几种不同意见或社会普遍流行的错误看法,以正面理由加以辩驳的论文,也属于论辩型论文。
3.综述型论文。这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。
4.综合型论文。这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。如《关于中国民族关系史上的几个问题》一文既介绍了研究民族关系史的现状,又提出了几个值得研究的问题。因此,它是一篇综合型的论文。

核酸诊断的研究历史

聚合酶链反应核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana 于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。1983年的一天,美国科学家Kary Mulis驱车在蜿蜒的州际高速公路上行驶中,孕育出了PCR技术的原型。他在实验上证明了PCR的构想,并于1985年申请了有关PCR的第一个专利,在Science杂志上发表了第一篇PCR的学术论文。从此PCR技术得到了生命科学界的普遍认可,Kary Mulis也因此获得了1993年的诺贝尔化学奖。 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶 I的Klenow片段,其缺点是酶不耐高温,90℃会变性失活,每次循环都要重新加。 1988年Saiki等人从温泉中分离的一株水生嗜热杆菌中提取到一种耐热DNA聚合酶,克服了这个缺点,从而使PCR技术得到了广泛的应用,也使PCR成为遗传与分子分析的根本性基石。经过十几年的发展,PCR成为实验室的常规技术。它是现代分子生物学研究中不可缺少的手段,是一种极为敏感的放大系统。相比于传统的临床诊断方法,核酸诊断是分子水平上的诊断技术,可以弥补传统临床诊断方法的某些缺陷,比如,核酸诊断能直接揭示病原体的存在,能客观反映病原体在人体内感染及活动情况,可以作为临床治疗中的一个有效监控手段,另外采用核酸诊断技术还可以检测到常规检测方法难以检测到的病原体,例如可以克服酶免检测技术中从感染到抗体产生的窗口期问题。因此,以PCR技术为代表的核酸诊断技术在临床诊断中得到日益广泛的应用。

核酸的化学组成探究小论文2000字左右

核酸的化学组成探究小论
比较多,肯定好的

生命科学学术论文

生命科学是通过分子遗传学为主的研究生命活动规律、生命的本质、生命的发育规律,以及各种生物之间和生物与环境之间相互关系的科学。下面是由我整理的生命科学学术论文,谢谢你的阅读。

有机化学与生命科学的关系

摘 要:有机化学在生命科学发展中起着理论基础,研究工具,阐明本质的重要作用,它们有着密切的关系。本文从有机化学的发展与生命科学,有机化学的主要研究成果与生命科学,有机化学研究的任务与生命科学,三个方面说明有机化学课程与生命科学中的关系。

关键词:有机化学;生命科学;关系

有机化学是生命科学的基础,有机化合物是构成生物体的主要物质,生物体中各种有机化合物的结构、性质以及它们在生物体内的的合成、分解、转化、代谢无不以有机化学为基础。有机化学产品正越来越多地应用于农业。如农药(杀虫剂、杀菌剂、除草剂)、植物生长调节剂、化肥、农膜等保证了农业生产;兽医药、饲料添加剂促进了畜牧业生产。要正确地使用,必须了解这些有机化合物的组成、性质和生理功能。但是,目前有些学校的生命科学专业越来约忽视有机化学课程,课时越来越少,这样对学生的进一步学习不利,比如生物化学、分子生物学等后续课程的学习。本文将从有机化学的发展与生命科学,有机化学的主要研究成果与生命科学,有机化学研究的任务与生命科学,三个方面说明有机化学课程与生命科学中的关系。希望能引起从事生命科学专业人对有机化学的重视。

1. 有机化学的发展与生命科学有密切的关系

有机化学就其最初的意义而言,是生物物质的化学。1807年,J. F. Yon Berzilius首先把从活细胞中获得的化合物命名为有机化合物。那时人们对生命现象的本质还没有认识,因而便赋予有机化合物一种神秘的色彩,许多化学家认为有机物是不可能用人工的方法合成的,它们是“生命力”所创造的。但是1828年,F. Wohler从无机物氰酸铵制得了尿素,否定了关于“生命力”的假说,可以说是化学家第一次干预了生命科学。

随后有机化学的发展主要集中在有机物的结构研究和合成方法上,较少关心它们的生物功能。尽管如此,许多化学家的研究成果还是成为了生命科学发展过程的里程碑。比如,19世纪中叶,I. Pasteur关于左旋和右旋酒石酸经典式的研究,导致70年代Vanthof和LeBel碳原子四面体构型学说的建立,它是生命分子结构不对称性的基础。E. Fischer对碳水化合物立体化学和肽合成化学的贡献是这两大类重要的生命分子化学的奠基石。20世纪50年代,A. Todd建立的核糖核酸(RNA)和脱氧核糖核酸(DNA)的化学结构,为Vatson-Crick DNA双螺旋结构的提出铺平了道路。60年代H. G. Khorana开创的磷酸二酯法合成寡核苷酸,不但证明了DNA上每三个碱基组成一个三联体密码子编码一个氨基酸从而提出了一套遗传密码,而且也开始了人工合成DNA的研究。化学家也将用化学小分子和化学工具研究生命体系。1985年H. Smith和K. Mullis发明了聚合酶链式反应(PCR)从而使分子生物学在技术上有了一个突破和飞跃。1988年SchrEiber在做靶向合成(TOS)天然产物FK506时发现FK506的结合蛋白FKBP12。1991年他们又利用小分子探针FK506和Cyclosporin发现他们可以抑制磷酸化酶神经组蛋白Calcineuin的活性。同时发现了可以生成FKBP-12-FK506神经组蛋白复合物和cyclophilin-cyclospolin-calcineulin的复合物。这些小分子同时与两个蛋白结合,而表现出的生物活性也是细胞内信号传导通路的分子基础。1992年,SchrEIber在美国《化学与工程新闻》发表了题为“用有机化学的原理探索细胞学”的论文,确信生命的过程就是生物体中化学变化过程[1-3]。

总之,有机化学理论上和实践上的成就为现代生物学的诞生和发展打下了坚实的基础。价键理论、构象学说、反应机理等成为解释生化反应的有力手段,蛋白质和核酸的组成和结构研究,顺序测定方法的建立,合成方法的创建,酶催化机制的研究,模拟酶的合成的化学模型的建立,小分子探针技术,单分子激发的技术,单分子操作的技术等重大成就,为现代生物学及生物技术开辟了道路。有机化学与生物问题的密切结合是推动生命科学发展的有力柱,也将人们对生命过程的了解提高到一个新的层次[4, 5]。

2. 一百多年来,有机化学的最高科学成果—— 诺贝尔化学奖综览

1901-2010年共110年,除去8年未授奖外,共授化学奖102项,其中有机化学方面得化学奖65项,占整个化学奖的63.7%。碳水化合物、光合作用得研究共8项;蛋白质、酶和核酸方面得研究共18项;甾族化合物、维生素和生物碱方面研究共8项;其它方面共31项。其中与生物相关的占34项。占有机化学的52.3%。由此可以看出有机化学与生命科学有着密不可分的关系。

3. 有机化学研究的任务与生命科学的关系

有机化学研究的主要任务是分离提纯、物理有机化学、合成。分离提纯即分离、提取自然界存在的各种有机物,测定它们的结构和性质,以便加以利用。物理有机化学是研究有机物结构与性质间的关系、反应经历的途径、影响反应的因素等,以便控制反应向我们需要的方向进行。合成是在确定了分子结构并对许多有机化合物的反应有相当了解的基础上,以由石油或煤焦油中取得的许多简单有机物为原料,通过各种反应,合成我们所需要的自然界存在的,或者自然界不存在的全新的有机物[6]。

3.1 有机化合物的分离提纯与生命科学

有机化学的分离提纯与生命科学的关系主要体现在两个方面,一是天然有机化学,二是分离与分析。

天然有机化学是研究动植物(包括海洋、陆地和微生物的次级代谢产物)及生物体内源性生理活性物质的有机化学。目的是希望发掘有生理活性的天然化合物,作为发展新药先导化合物,或者直接用于临床或为农业生产服务。天然有机化学的发展与国民经济有密切的联带关系,对于开发新型药物、新型农药至关重要。我国自然资源非常丰富,又有几千年传统防治疾病的经验积累,在我国大力发展天然有机化学的研究有着非常现实的意义。对内源性生理活性物质的发现及其生理活性研究,又开辟了天然有机化学研究的新领域。充分利用开发我国动植物资源包括海洋生物资源,努力开拓新的生理活性物质,为国民经济服务是天然有机化学的重要任务。

分离提纯和分析的紧密结合是有机分析的一大特点。在生命科学中也涉及到复杂系统的痕量或微量的有机物分离分析问题,比如生物活性物质的提取和分析等。气相色谱的发展是高效分离的突破口,而高效气相色谱和高效液相色谱是现代分离技术的基础。在气相色谱中新型高选择性的耐高温固定相(如手性固定相和异构体选择性分离的固定相)仍是比较活跃的研究领域。液相色谱中选择性色谱柱和选择性流动相

的应用发展是今后若干年中的主攻方面。细径柱的合理开发,多维色谱以及以色谱为主的系统分析网络将使复杂系统有机痕量物质的分离和分析跃上新的台阶。超临界流体色谱,包括毛细管柱超临界流体色谱是正在发展中的新技术。毛细管电泳是生命科学日益发展的情况下产生的新型的高效技术,在蛋白质和核酸的分离方面已显出极大的威力,是有很强发展活力的新领域。核磁共振波谱技术在谱仪性能和测量方法上有了巨大的进步,其中二维方法的发展已成为解决结构问题最主要的物理方法。NMR今后的发展趋势是如何得到更多的相关信息、简化图谱、提高检测灵敏度和发展三维核磁共振技术。质谱技术最突出的进步是新的解析电离技术的发展。随着接口技术的进步,联用技术的应用面更扩大,效果更为提高。这将使质谱成为生命科学中的一个崭新的研究手段。

3.2 物理有机化学与生命科学

物理有机化学主要是通过现代物理实验方法与理论计算方法研究有机分子结构及其物理、化学性能之间的关系,阐明有机化学的反应机理。生命科学中的物理有机化学研究,包括主——客体化学中的模拟酶催化反应,主体分子提供的微环境可控制反应,主体分子对客体分子的识别作用以及疏水亲脂作用等都是具有重要理论意义的研究领域。量子有机化学由静态向动态方向的发展是当前物理有机化学的重要组成,分子力学方法在有机分子结构与构象的研究方面有着非常乐观的发展前景。我国化学家蒋锡夔院士等发表了题为“物理有机化学前沿领域两个重要方面——有机分子簇集和自由基化学的研究”的论文,提出了可用物理有机化学方法解决生命科学的难题。

3.3 有机合成与生命科学

有机合成也与生命科学有着密切的关系。在与生命科学的联系中,金属有机化学和元素有机化学是最为活跃的领域之一。比如,有机磷化合物在农药、医药、萃取剂等方面以及有机合成化学中都有重要的应用。开展有生物活性的有机磷化合物的研究,在生命科学研究中也具有极为重要的意义。近年生物有机硅化合物以及有机硅化合物在有机合成中的应用有新的迅速发展。在基础和应用基础研究方面,硅烯、硅宾、硅的3d空轨道化学和多硅烷的研究是当今有机硅化学重要研究课题。有机硅化合物在有机合成中特别在天然有机物的合成中占有重要的地位。

无论从有机化学的发展、有机化学的研究成果和有机化学研究的任务来看,有机化学课程在生命科学中都起着理论基础,研究工具,阐明本质的重要作用。因此在生命科学中要加强有机化学的学习。

[参考文献]

[1]SchrEiber SL. Using the principle of organic chemistry ti explore cell bidogy.C&E New,1992,70:22~ 32.

[2]周晓俊,吴晖. 有机化学与生命科学. 云南师范大学学报,1998,18(1):93-96.

[3]张礼和. 从生物有机化学到化学生物学. 化学进展,2004,16(2):313-318.

[4]朱光美,杜灿屏. 试谈生物有机化学研究的现状与展望. 大学化学,1994.9(4):6-8.

[5]吴毓林,陈耀叠. 探索有机体的奥秘—谈世纪交替时代的有机化学. 中国科学院院刊,1995,10(10):215-219.

[6]汪小兰,有机化学(第四版),高等教育出版社,2005,1-2.

点击下页还有更多>>>生命科学学术论文

碱基详细资料大全

碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。

除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。

上一篇:知网下架小论文

下一篇:山农大论文查重率