欢迎来到学术参考网
当前位置:发表论文>论文发表

化学分析方法的研究论文

发布时间:2023-12-08 02:20

化学分析方法的研究论文

【摘要】:分析化学始于一些分析检验的实践活动。商品生产和交换的发展 ,促进了分析检验工作。1 6世纪 ,化学反应广泛地应用于湿法分析。 1 8世纪中叶 ,重量分析法使分析化学由单纯的定性分析迈入了定量分析的时代。到了 1 9世纪 ,定性分析趋于完善 ,定量分析的各种方法也相继出现并不断发展。分析化学真正成为一门独立的学科是在 2 0世纪初 ,被称之为经典分析化学。 2 0世纪以来 ,在经典化学不断充实、完善的同时 ,仪器分析也迅猛发展 ,并且在分析化学中占据越来越重要的地位。
【关键词】: 化学分析 仪器分析
1 王瑾;絮凝剂在废水处理中的应用及絮凝体沉降动力学研究[D];天津轻工业学院;2000年
2 沈莉萍;仪器分析方法研究胆红素自由基对人红细胞膜的损伤[D];浙江大学;2002年
3 余杰;中药材质量分析信息处理方法研究[D];浙江大学;2002年
4 于净;多媒体计算机辅助教学研究与仪器分析教学软件的开发[D];沈阳药科大学;2003年
5 王蕊;仪器分析教学课件设计制作[D];青岛大学;2003年
6 蔡自建;甘薯糖蛋白的分离纯化及其糖链结构鉴定[D];西南农业大学;2003年
7 王九英;ICP-AES法联合测定铝合金中各元素的方法研究[D];西北工业大学;2003年
8 徐慧;一种提高PDA胶体相对分子质量的新方法探索[D];南京理工大学;2003年
9 李智利;高师仪器分析开设研究型实验的探索与实践[D];湖南师范大学;2004年
10 李海东;几种绿化植物挥发性物质动态释放特性的研究[D];内蒙古农业大学;2004年

求文档: 化学论文

这是一篇综述性关于化学痕量分析的论文。如果没有自己做试验,那综述性论文是很好的选择,因为不需要做试验,查一些资料,就可以自己整理出来。

气相色谱有机痕量分析进展

摘要对气相色谱有机痕量分析的进展进行了评述,共引用文献63篇。
关键词气相色谱;有机痕量分析;前处理;综述

前言
痕量分析是指样品中低含量物质的测定,这些低含量物质通常被称为痕量组分。所谓痕量分析这个概念是一个动态的概念,是随着科学技术的发展而变化的。梁汉昌[1]认为,现代痕量分析是指检测纯物质或混合物中所含浓度为10-9-100×10-6,或者更低的组分。朱明华[2]认为,含量在100 ppm以下的组分的分析,称为痕量分析(TraceAnalysis)。
随着国民经济的发展和高新技术的不断出现,各行业各领域对物质纯度和质量的要求越来越高,环境及生命体中的痕量组分也会对自然界及生物体造成很大影响,从而促进和推动了痕量分析技术的发展。因此,研究并建立更加灵敏、更加准确的痕量分析方法具有重要的现实意义。
诸多分析方法,如气相色谱法[3]、液相色谱法[4],质谱法、红外光谱法、拉曼光谱法[5],毛细管电泳法[6],电化学法[7]、毛细管电色谱法一电喷雾质谱测定法[8]、导数分光光度法[9]等都可以用于有机痕量分析。气相色谱法由于具有分离效率高,选择性好,灵敏度高,分析速度快,直接进样样品用量少,一次进样可以同时分析多种组分等突出优点,特别适用于有机痕量物质的分析。但是有机痕量分析是一项面大、面广、难度大、要求高的工作,不仅包括仪器本需要解决的检测灵敏度和分离的问题,还包括极为关键的内容,如样品采集、运输、存储、制备等。

1.1气相色谱有机痕量分析样品预处理
环境中有机污染物(包括环境激素),食品中某些成分,药物中的杂质等的分析大都涉及痕量水平的检测,必须适应不同基体和大量共存物等复杂因素,是一项系统的痕量分析工作。在早期,人们把注意力集中于发展高灵敏和高选择性的色谱分析方法上。通过二十年来的实践,人们认识到在这些分析中,样品的前处理是整体分析方法中不可忽略的一个环节,而且往往还是影响分析成败的关键。我国在样品前处理技术方面已有一定的发展,但不平衡。现就近年来国内外对样品前处理技术的进展作一简要介绍。

1.1.1溶剂萃取
溶剂萃取是各类样品最常用的处理技术之一。液-固萃取(LSE)和液-液萃取(LLE)一直是应用最为广泛的样品前处理方法,如索氏提取,兼有富集和排除基体干扰的效果,过去美国EPA500,600,800系列方法大都采用这个方案,其缺点是要耗用较大量的有机溶剂(数10 mL)并易引入新的干扰(溶剂中的杂质等),还需要费时的浓缩步骤,易导致被测物的损失,造成空气污染,效率也较低。
微量溶剂萃取和连续萃取在方法和设备上均作了改进,前者每次萃取只需耗用100-1000μL的溶剂,灵敏度有所提高;连续萃取法结合气相色谱测定海水中的痕量有机物,检测限可达10 ppt水平(辛烷)[10]。
快速溶剂萃取(ASE)是由Bruce等自1995年以来介绍的一种萃取技术[11],适用于固体和半固体样品的前处理技术是在加压(7-12 MPa,最高可达20 MPa)和加热(50-200℃)条件下进行萃取,适用于固体样品(10-30 g),溶剂用量15-45mL,全程约15 min。ASE在飘尘、底泥、食品和鱼肉中的除草剂、含磷农药,多氯二苯呋喃和多氯联苯的监测中已得到广泛应用,回收率和相对标准偏差(RSD)均优于一般萃取法12]。

1.1.2微波萃取
微波萃取是指在微波能的作用下,用有机溶剂将样品基体中的待测组分萃取出来的过程。以往微波处理仅用于无机分析,自20世纪80年代末期逐渐扩展到有机分析。微波萃取的萃取速度快,溶剂用量少,回收率高,可以同时处理多个样品。主要适用于固体或半固体样品。微波萃取的原理是:利用极性分子吸收微波能量来加热具有极性的溶剂,如:甲醇、乙醇、丙酮和水等等。由于萃取过程是在密封罐中进行,内部压力可达1 MPa以上,因此,溶剂沸点比常压下的溶剂沸点提高了许多。这样用微波萃取可以达到常压下使用同样的溶剂所达不到的萃取温度,可以提高萃取效率。对有机氯农药的微波萃取试验表明,萃取温度120℃时可获得最好的回收率。微波萃取技术已应用于土壤、沉积物、海洋生物、食品和蔬菜中的多环芳烃、农药残留、有机金属化合物、重金属及有毒元素的萃取测定,回收率一般优于索氏提取和超声波萃取法[13],该法易于实现自动化[14]。但微波萃取技术在应用时可能出现微波泄露的问题,作为一种新兴技术,有待进一步研究。

1.1.3液相微萃取
液相微萃取或溶剂微萃取是1996年发展起来的一种新型的样品前处理技术,最初是由Jeannot和Cantwell提出的[15]。此技术是将有机液滴挂在气相色谱(GC)微量进样器针头上对物质进行萃取。微量进样器,既用作GC进样器,又用作微量分液漏斗。LPME分动态和静态两种,静态LPME,用10μL微量进样器抽取1μL溶剂,浸入到水样中,水样中有机物通过扩散作用分配到有机溶剂中,一定时间后,将溶剂抽回进样器中,进GC分析。与静态LPME操作不同,动态LPME用微量进样器抽取1μL溶剂,将微量进样器浸入到样品中,抽取3μL样品进入进样器中,停留一定时间,推出3μL样品,如此反复,取有机溶剂进行GC分析。该技术是在液-液萃取的基础上发展起来的,与液-液萃取相比,LPME可以提供与之相媲美的灵敏度,甚至更佳的富集效果,同时,该技术集采样、萃取和浓缩于一体,灵敏度高,操作简单,而且还具有快捷,廉价等特点。另外,它所需要的有机溶剂也是非常少的(几至几十μL),是一项环境友好的样品前处理新技术,特别适合于环境样品中痕量、超痕量污染物的测定。另外,LPME技术在处理样品时只需一个搅拌器、一支普通的微量进样器或多孔性的中空纤维,这些特点使液相微萃取与便携式的气相色谱仪很容易联用,可望对环境污染物进行简单、快捷的现场分析,因此更具有较广泛的应用前景[16]。

1.1.4微蒸馏
蒸馏包括简单蒸馏,分馏,减压蒸馏、水蒸气蒸馏等。蒸馏技术是挥发性和半挥发性有机物样品精制的第一选择。但是在进行色谱分析样品制备时,蒸馏通常不是第一选择技术。具有蒸馏时间短,能够制备多种样品、可进行小体积样品蒸馏等优点的微蒸馏技术可以成功的用于色谱分析前样品的精制或者混合样品的预分离。Tim Mansfeldt曾用微蒸馏技术测定了土壤中的氰化物[17],得到了很好的效果。

1.1.5固相萃取(SPE)
固相萃取是70年代初发展起来的样品前处理技术,固相萃取主要用于复杂样品中微量或痕量目标化合物的分离和富集。例如,生物体液中(如血液,尿等)药物及其代谢产物的分析,食品中有效成分或有害成分的分析,环境水样中各种污染物的分析都可使用SPE进行样品预处理。该技术利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。据统计,现在将近有50%的环境样品采用这个方法。固相萃取是净化和富集相结合的方法,特别适用于水样样品,样品量不受限制,少到几毫升多至几十升都可适应。从实验技术上讲,SPE接近于一般的顶替色谱,样品藉重力或加压通过萃取床层,除去基体,富集待测物,然后用少量(若干毫升)适当的溶剂洗脱回收待测物。
SPE所用固定相主要有硅胶、反相C18固定相(RP-C18)、石墨化碳黑、苯乙烯-二乙烯基苯系列聚合物、聚二甲基硅氧烷(PDMS)等。这些固定相对不同有机物的选择性不同,SPE可利用固定相的选择性来萃取样品中各种有机物,从而提高目标物的分析灵敏度。固相萃取的萃取床层有两种形式,一是柱状,商品预装柱的装填量约100~500 mg,另一是以较细的颗粒混于聚四氟乙烯纤维中形成状(disc),装填量约30 mg-10 g,其优点是层薄而紧,不易发生渗漏,样品通过速度可较快(~1 L/min)。当用气相色谱一电子捕获检测器(GC-ECD)测定有机氯等非极性农药残留时,一般采用氧化铝一银盐吸附柱,硅胶吸附柱的净化分离效果不如氧化铝柱。
SPE主要用于痕量分析中,其最大优点是减少了高纯溶剂的使用,易于自动化,当它与热脱附装置联用时可避免使用溶剂,降低实验成本及溶剂后处理费用。SPE与LLE相比,避免了LLE中易出现的乳化问题。但对有些样品,SPE空白值较高,灵敏度比LLE方法差,极性化合物的萃取也存在一些问题。后来逐渐发展了SPE-GC/GC-MS18]在线分析方法。在线方法的优点是自动化分析,分析物损失少,外来污染少,方法精密度高,适于大批量样品的分析,但缺点是顺序操作,程序不灵活,导致不同步骤的优化较复杂,甚至不能优化。

1.1.6固相微萃取
近年来,在SPE的基础上发展出了固相微萃取(SPME)样品前处理技术,但它不是把待测物全部分离出来,而是通过样品(例如水样)与萃取剂(固相)之间的平衡分配来实现分离。该法的基本技术是将一附着有适当涂层的弹性石英丝(丝径100-150μm)浸入样品(浸入方式)或置于样品上部空间(顶空方式),待平衡一段时间(2-30 min)后,样品中的待测物即被吸附于涂层上,吸附量与样品中待测物的原始浓度成正比,并与待测物的物化性质和平衡条件有关,然后将石英丝导入气相色谱进样室,待测物受热挥发进入色谱系统。SPME保留了SPE的优点,避免了SPME中样品高空白的缺点,完全避免使用溶剂。该法对水中挥发性有机物的测定取得了较好的效果,以聚硅氧烷为涂层,达到了饮用水中挥发性有机物的检测要求(EPA524.2法)。此法也已成功地应用于排放水中氯苯、PCB、PCDD、除草剂、农药、酚等的监测,数据与液液萃取法基本平行,RSD稍低[19]。应用聚丙烯酸涂层,结合GC-MS,对水中氯酚用SPME方法进行预处理,效果也令人满意[20]。
把涂层石英丝悬置于水样的顶端空间中,藉气相中的待测物与涂层平衡分配,开发了顶端空间的SPME技术。适当提高平衡温度或缩小顶端(气相)空间的体积,此法甚至可适用于水中沸点稍高物质的分析,缩短了样品萃取时间,易于测定各种介质中挥发性有机物[21]。顶空-固相微萃取(HS-SPME)在重现性上可与静态顶空方法相比,在灵敏度上可以与动态顶空方法相比,是目前应用最为广泛的顶空分析方法。

1.1.7顶空样品制备技术
顶空气相色谱不是一种新技术,此技术从气相色谱出现初期就一直在应用着。顶空分离技术广泛用于把挥发性物质从液体或固体样品中的基体中分离出来[22]。它的原理是:在恒温的条件下,样品中挥发性物质在气-液(或气-固)两相间分配,达到平衡时,取液上蒸气相进行GC分析。因此,平衡温度和平衡时间是影响分析灵敏度的主要因素。而分析的准确度主要取决于良好的恒温状态和分析环境,另外要注意样品瓶和瓶密封塞不能对样品有吸附效应。顶空分离有以下特点:(1)可用于测定不能直接汽化的试样(液体、固体)中的微量挥发性组分,不需对样品进行特殊处理;(2)色谱柱不会由于直接注入水样或高沸点物质或非挥发性组分而污染;(3)由于在气相中,挥发性组分的浓度比其它组分的浓度高,因此,可以提高挥发性组分的检测灵敏度。(4)不使用试剂,操作简单,可与气相色谱联用。

1.1.8吹扫-捕集法(动态顶空法)
吹扫-捕集法可看作是一个连续的顶空技术,主要用于样品中挥发性物质的分析,该方法在理论上可测定水中全部挥发性有机物。吹扫-捕集的原理是依据许多有机化合物具有挥发性的特点,利用气体将挥发性物质从样品中吹扫出来,吹扫出来的组分被捕吸附的化合物吹脱出来,直接用色谱仪进行分析。这样可以将水体中的痕量有机物富集到足以用色谱能够检测的浓度。此法不但克服了色谱分离中溶剂主峰掩盖其它峰的问题,而且比静态顶空有更高的检测灵敏度,更适于痕量和超痕量分析,美国环保局实验室应用吹扫-捕集技术测定公共饮用水和各种环境样品中挥发性有机物。利用吹扫捕集-气相色谱分析法时,最好使用大口径(0.54 mm)毛细管色谱柱;如用填充柱时,应选择冷柱头进样方式,以便使各组分得到很好的分离。另外吹扫流量、吹扫和捕集时间是影响分析灵敏度的主要因素,最好用标准样品在已知的条件下通过实验获得。国内已开展了一些气提法富集水中痕量有机物研究,但挥发性有机物回收率低,不够稳定,其应用面亦窄。许丽娟[23]等人改进了气提装置,深入、系统地研究了气提法的实验条件对挥发性有机物收率的影响,并确定了最佳富集条件。在进行了合成样品实验的基础上以气提法富集GC-MS联用方法对多个水样进行定性定量分析,取得了令人满意的结果。

1.1.9超临界流体萃取(SFE)
超临界流体萃取(SFE)是近几年出现的一种特殊分离技术。SFE主要使用超临界状态的C02作萃取剂,兼有气体的渗透能力和液体的分配作用。超临界流体对物质的溶解能力接近于液体,但其粘度接近于气体,扩散系数介于液体和气体之间,即它既有良好的溶解能力,又有高效的传输能力。目前最常用的流体CO2,临界温度31.3℃,临界压力7.38 MPa)。流出液中的C02在常压下挥发,待测物用溶剂溶解后进行分析。与传统的溶剂提取方法相比,SFE有很多优点。首先可以避免使用大量溶剂,提高萃取效率,减少了分析时间,降低对样品污染的可能性,特别适合于环境、生物等方面的组成复杂、组分易变的样品[24],而且可以自动化。SFE是近几年才发展起来的,很多实验参数和条件还有待进一步优化和明确。萃取液的压力、温度已能很好的控制,但其它一些问题,如细胞组织的萃取、萃取液通过细胞时的速度、滞留时间、样品物质的干扰等还需要进一步的研究[25]。

1.1.10膜分离技术
膜分离是近年来新发展起来的可用于分析化学领域中的新技术之一。利用待测物与溶剂或待测物与大分子物质(如蛋白质或其他高聚物)的传递速度的差异而使彼此得以分离。膜萃取是用膜将目标分析物从样品溶液(给体)萃取到萃取剂(受体)中。如果系统保持较长时间,相间可建立平衡。在样品处理过程中,尽可能将目标分析物从给体转到受体上。膜萃取可与反相-液相色谱(RP-HPLC)[26]、GC[27,28]和毛细管电泳(CE)等在线联用。膜萃取克服了水本身的干扰、选择性较高,然而低极性膜不适合极性有机污染物分析。膜萃取成功地测定了水样中许多有机污染物[29],有些膜对水中低浓度物质有较高的富集倍数。

1.1.11超声悬浮技术
超声悬浮技术是利用声辐射力将物体悬浮在超声驻波场声压结点处的无容器处理技术,该技术能够以非接触的方式处理体积为几μL甚至几十pL的样品,避免因容器壁的不确定性吸附、记忆效应和污染而引起的分析物的损失,排除由于容器壁与样品间的相互作用对细胞反应的干扰以及容器壁引起的光学干扰,且对被悬浮物体的物理化学性质无特殊要求,是基于单颗粒或小液滴研究的强有力工具,特别适合于材料的深过冷(远离凝固平衡状态)研究和小体积痕量分析,可使检测极限降低1-3个数量级。超声悬浮技术在生物科学与生物技术中的应用越来越引人注目,展示了诱人的前景。尽管如此,它还处于初始阶段,国内基本是一个空白。

回顾样品前处理技术已取得相当的成就,但有机痕量分析的科学家们仍在不断努力发展更有效、更合理、更简便可靠的新技术和新方法。由于各种样品来源和存在形式比较复杂,待测物也多种多样,不太可能找到一个统一的或“万能”的前处理方法,要根据检测要求和样品情况,因地制宜地制订出适当的方案。在所有已知的方法中,固相萃取法、固相微萃取法将继续发展,应用面将更广,方法将更趋于自动化。在固体样品方面,除改进的液固萃取(快速、微波协助等)外,超临界流体萃取将随着对其机理认识的深化,得到更好的选择性和处理效果。膜技术,特别是微透析和支持液膜的应用是值得注意的发展动向。色谱技术的联用,如GC/GC,LC/GC以及LC/CE(毛细管电泳)将为样品分析,特别是有机痕量分析提供更为广阔的应用领域。样品中的挥发性有机物将仍以顶端空间法(包括吹扫-捕集)为主要的前处理方式。其他的样品前处理技术,如电化学富集,免疫化学色谱也是值得注意的发展内容。借助于计算机技术的智能化的样品前处理方案也将是一个研究方向。

分析化学发展史论文

分析化学发展史
摘 要]分析化学始于一些分析检验的实践活动。商品生产和交换的发展,促进了分析检验工作。
16世纪,化学反应广泛地应用于湿法分析。18世纪中叶,重量分析法使分析化学由单纯的定性分析迈
入了定量分析的时代。到了19世纪,定性分析趋于完善,定量分析的各种方法也相继出现并不断发展。
分析化学真正成为一门独立的学科是在20世纪初,被称之为经典分析化学。20世纪以来,在经典化学
不断充实、完善的同时,仪器分析也迅猛发展,并且在分析化学中占据越来越重要的地位。
[关键词]化学分析;仪器分析
在化学还没有成为一门独立学科的中世
纪,甚至古代,人们已开始从事分析检验的实践
活动。这一实践活动来源于生产和生活的需
要。如为了冶炼各种金属,需要鉴别有关的矿
石;采取天然矿物做药物治病,需要识别它们。
这些鉴别是一个由表及里的过程,古人首先注
意和掌握的当然是它们的外部特征。如水银又
名“流珠”,“其状如水似银”,硫化汞名为“朱
砂”、“丹砂”等都是抓住它们的外部特征。人们
初步对不同物质进行概念上的区别,用感官对
各种客观实体的现象和本质加以鉴别,就是原
始的分析化学。
在制陶、冶炼和制药、炼丹的实践活动中,
人们对矿物的认识便逐步深化,于是便能进一
步通过它们的一些其他物理特性和化学变化作
为鉴别的依据。如中国曾利用“丹砂烧之成水
银”来鉴定硫汞矿石。
随着商品生产和交换的发展,很自然地就
会产生控制、检验产品的质量和纯度的需求,于
是产生了早期的商品检验工作。在古代主要是
用简单的比重法来确定一些溶液的浓度,可用
比重法衡量酒、醋、牛奶、蜂蜜和食油的质量。
到了6世纪已经有了和我们现在所用的基本相
同的比重计了。
商品交换的发展又促进了货币的流通,高
值的货币是贵金属的制品,于是出现了货币的
检验,也就是金属的检验。古代的金属检验,最
重要的是试金技术。在我国古代,关于金的成
色就有“七青八黄九紫十赤”的谚语。在古罗马
帝国则利用试金石,根据黄金在其上划痕颜色
和深度来判断金的成色。16世纪初,在欧洲又
有检验黄金的所谓“金针系列试验法”,这是简
易的划痕试验法的进一步发展。
16世纪,化学的发展进入所谓的“医药化
学时期”。关于各地各类矿泉水药理性能的研
究是当时医药化学的一项重要任务,这种研究
促进了水溶液分析的兴起和发展。1685年,英
国著名物理学家兼化学家R·波义耳(Boyle,
1627-1691)编写了一本关于矿泉水的专著《矿
泉的博物学考察》,相当全面地概括总结了当时
已知的关于水溶液的各种检验方法和检定反
应。波义耳在定性分析中的一项重要贡献是用
多种动、植物浸液来检验水的酸碱性。波义耳
还提出了“定性检出极限”这一重要概念。这一
时期的湿法分析从过去利用物质的一些物理性
质为主,发展到广泛应用化学反应为主,提高了
分析检验法的多样性、可靠性和灵敏性,并为近
代分析化学的产生做了准备。
18世纪以后,由于冶金、机械工业的巨大
发展,要求提供数量更大、品种更多的矿石,促
进了分析化学的发展。这一时期,分析化学的
研究对象主要以矿物、岩石和金属为主,而且这
种研究从定性检验逐步发展到较高级的定量分
析。其中干法的吹管分析法曾起过重要作用。
此法是把要化验的金属矿样放在一块木炭的小
孔中,然后以吹管将火焰吹到它上面,一些金属
氧化物便熔化并会被还原为金属单质。但这种
方法能够还原出的金属种类并不多。到了18
世纪中叶,重量分析法使分析化学迈入了定量
分析的时代。当时著名的瑞典化学家和矿物学
家贝格曼(Torbern Bergman,1735-1784)在《实
用化学》一书中指出:“为了测定金属的含量,并
不需要把这些金属转变为它们的单质状态,只
要把他们以沉淀化合物的形式分离出来,如果
我们事先测定沉淀的组成,就可以进行换算
了。”
到了19世纪,新元素如雨后春笋般出现,
加之矿物组成复杂,湿法检验若没有丰富的经
验和周密的检验方案,想得到确切的检验结果
显然是非常困难的。德国化学家汉立希(Pfaff
Christian Heinrich,1773-1852)在他1821出版的
一书中指出:为了使湿法定性检验的问题简单
化和减少盲目性,应进行初步试验。1829年,
德国化学家罗塞(Hoinrich Rose ,1795-1864)首
次明确地提出并制定了系统定性分析法。1841
年德国化学家伏累森纽斯(Carl Remegius Frese-
nius,1818-1897)改进了系统定性分析法,较之
罗塞的方案使用的试剂较少。后来又得到美国
化学家诺伊斯(Arthur )的进一步精细
研究和改进,使定性分析趋于完善。
同一期间,定量分析也迅猛发展。由伏累
森纽斯对各种沉淀组成的测定结果和今天的数
据加以对比,可以看出重量分析法到了伏累森
纽斯时期已经非常准确。他当年研究的某些测
定方法至今仍在沿用,其精确度也很可靠。他
还对一系列复杂的分离问题如钙与镁、铜和汞、
锡和锑等的分离都提出了创造性的见解。他还
将缓冲溶液、金属置换、络合掩蔽等手段用于解
决这些问题。
随着过滤技术的改进,有机沉淀剂的应用,
加热、净化、重结晶、高精度分析天平等方面研
究工作的进展,使重量分析的精确度得到更进
一步的提高。但这种方法操作手续繁琐,耗时
长,这就使得容量分析迅速发展。根据沉淀反
应、酸碱反应、氧化-还原反应及络合反应的特
点,相应出现了沉淀滴定、酸碱滴定、氧化-还
原滴定及络合滴定的容量分析法。法国物理学
家兼化学家盖吕萨克(Gay-Lussac,1778-
1850)应该算是滴定分析的创始人,他继承前人
的分析成果对滴定分析进行深入研究,对滴定
法的进一步发展,特别是对提高准确度方面做
出了贡献,他所提出的银量法至今仍在应用。
在各种滴定法中,氧化-还原滴定法占有最重
要的地位。碘量法在该世纪中叶已经具有了今
天我们沿用的各种形式。1853年赫培尔
(Hempel)应用高锰酸钾标准溶液滴定草酸,这
一方法的建立为以后一些重要的间接法和回滴
法打下了基础。沉淀滴定法则在盖吕萨克银量
法的启发下,继续有了较大发展,其中最重要的
是1856年莫尔提出的以铬酸钾为指示剂的银
量法,这便是广泛应用于测定氯化物的“莫尔
法”。1874年伏尔哈特(d)提出了间接
沉淀滴定的方法,使沉淀滴定法的应用范围得
以扩大。络合滴定法在该世纪的中叶,借助于
有机试剂而得以形成,且有较大进展。酸碱滴
定法由于找不到合适的指示剂进展不大,直到
19世纪70年代,酸碱滴定的状况仍没有重大
改变。只是当人工合成指示剂问世并开始应用
后,由于它们可在一个很宽的pH范围内变色,
这才使酸碱滴定的应用范围显著地扩大。滴定
分析发展中的另一个方面是仪器的设计和改
进,使分析仪器已基本上具备了现有的各种形
式。因而,这一时期堪称为滴定分析的极盛时
期。
直到19世纪末,分析化学基本上仍然是许
多定性和定量的检测物质组成的技术汇集。分
析化学作为一门科学,很多分析家认为是以著
名的德国物理化学家奥斯特瓦尔德(Wilholn
Ostwald,1853-1932)出版《分析化学的科学基
础》的1894年为新纪元的。20世纪初,关于沉
淀反应、酸碱反应、氧化-还原反应及络合物形
成反应的四个平衡理论的建立,使分析化学家
的检测技术一跃成为分析化学学科,称之为经
典分析化学。因此,20世纪初这一时期是分析
化学发展史上的第一次革命。
20世纪以来,原有的各种经典方法不断充
实、完善。直到目前,分析试样中的常量元素或
常量组分的测定,基本上仍普遍采用经典的化
学分析方法。20世纪中叶,由于生产和科研的
发展,分析的样品越来越复杂,要求对试样中的
微量及痕量组分进行测定,对分析的灵敏度、准
确度、速度的要求不断提高,一些以化学反应和
物理特性为基础的仪器分析方法逐步创立和发
展起来。这些新的分析方法都是采用了电学、
电子学和光学等仪器设备,因而称为“仪器分
析”。仪器分析所牵涉到的学科领域远较19世
纪时的经典分析化学宽阔得多。光度分析法、
电化学分析法、色层法相继产生并迅速发展。
这一时期的分析化学的发展要受到物理、数学
等学科的广泛影响,同时也开始对其它学科作
出显著贡献,这是分析化学史上的第二次革命。
70年代以后,分析化学已不仅仅局限于测
定样品的成分及含量,而是着眼于降低测定下
限、提高分析准确度上。并且打破化学与其它
学科的界限,利用化学、物理、生物、数学等其它
学科一切可以利用的理论、方法、技术对待测物
质的组成、组分、状态、结构、形态、分布等性质
进行全面的分析。由于这些非化学方法的建立
和发展,有人认为分析化学已不只是化学的一
部分,而是正逐步转化成为一门边缘学科———
分析科学,并认为这是分析发展史上的第三次
革命。
目前,分析化学处于日新月异的变化之中,
它的发展同现代科学技术的总发展是分不开
的。一方面,现代科学技术对分析化学的要求
越来越高。另一方面,又不断地向分析化学输
送新的理论、方法和手段,使分析化学迅速发
展。特别是近年来电子计算机与各类化学分析
仪器的结合,更使分析化学的发展如虎添翼,不
仅使仪器的自动控制和操作实现了高速、准确、
自动化,而且在数据处理的软件系统和计算机
终端设备方面也大大前进了一步。作为分析化
学两大支柱之一的仪器分析发挥着越来越重要
的作用,但对于常量组分的精确分析仍然主要
依靠化学分析,即经典分析。化学分析和仪器
分析两部分内容互相补充,化学分析仍是分析
化学的一大支柱。美国Analytical Chemistry杂
志1991年和1994年两次刊登同一作者的长文
“经典分析的过去、现在和未来”,强调重视经典
分析的重要性。
1] 余新武,张志钢,罗玉梅. 化学的发展史与环境的关系[J]. 湖北师范学院学报(自然科学版) , 2003,(04) .
[2] 张秉孝. 现代分析化学与发展动向[J]. 内蒙古石油化工 , 2001,(04) .
[3] 王睿. 现代科技革命与分析化学[J]. 安徽化工 , 2004,(04) .
[4] 王翔. 有机化学发展史概述[J]. 黔东南民族师范高等专科学校学报 , 2003,(06) .
[5] 孙玉彬,耿玉宏. 分析化学的发展与展望[J]. 滨州师专学报 , 2001,(02) .
[6] 金钦汉. 试谈分析化学的明天[J]. 大学化学 , 2000,(05) .
[7] 高鸿. 分析化学已发展到分析科学阶段[J]. 大学化学 , 1999,(04) .
[8] 周南. 现代分析化学的内涵和新定义[J]. 理化检验.化学分册 , 2001,(01) .
[9] 邓星亮. 化学发展史与自然辩证法[J]. 邵阳学院学报(社会科学版) , 1994,(06) .
[10] 钟桐生. 分析化学进展[J]. 益阳师专学报 , 2002,(06) .

化学分析类毕业论文怎么写啊?要哪些资料哦?

你是自己写还是找人代写呢?如果不间等待太久。 实在不想写的话,建议找代写吧。推荐一下,希望可以给你点参考,QQ号好像是1+0+3+7+2+5+2+6+5+7 他们是完成论文满意再付款的. 化学分析类毕业论文

上一篇:中文科技期刊数据库特点

下一篇:cscd核心期刊难发吗