欢迎来到学术参考网
当前位置:发表论文>论文发表

塑料材料的应用的论文

发布时间:2023-12-11 18:54

塑料材料的应用的论文

根据名种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。
①通用塑料-般是指产量大、用途广、成型性好、 价格便宜的塑料。 通用塑料有五大品种, 即聚Z烯(PE)聚丙烯(PP)聚氯乙烯(PVC)、聚苯乙烯(PS)及丙烯青一丁二一苯乙烯共聚合物( ABS )。它们都是热塑料。

②工程塑料- 般指能承受一定外力作用 ,具有良好的机械性能和耐高、低温性能,尺寸稳定性较好,可以用.作工程结构的塑料,如聚酰胺、聚砜等。工程塑料在工程塑料中又将其分为通用工程塑料和特种I程塑料两大类。

③特种塑料一般是指具有特种功能,可用于航空、航天等特殊应用领域的塑料。如氟塑料和有机硅具有突出的耐高温、自润滑等特殊功用,增强塑料和泡沫塑料具有高强度、高缓冲性等特殊性能,这些塑料都属于特种塑料的范畴。

用途分类:

①通用塑料

-般是指产量大、用途广、成型性好、价格便宜的塑料。通用塑颗粒料有五大品种,即聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)及丙烯腈一丁二 烯-苯乙烯共聚合物( ABS)。

这五大类塑料占据了塑料原料使用的绝大多数,馀的基本可以归入特殊塑料品种, 如:PPS、PPO、PA、PC、POM等,它们在日用生活产品中的用量很少,主要应在工程产业、国防科技等高端的领域,如汽车、航天、建筑、通讯等领域。塑料根据其可塑性分类,可分为热塑性塑料和热固性塑料。通常情况下,热塑性塑料的产品可再回收利用,而热:固性塑料则不能。根据塑料的光学性能来分,可分为透明、半透明及不透明原料,如PS、PMMA、AS、 PC等属于透明塑料,其它大多数塑料都为不透明塑料。

②工程塑料

工程塑料在耐久性、耐腐蚀性、耐热性等方面能达到更高的要求,而且加工更方便并可替代金属材料。工程塑料被广泛应用于电子电气、汽车建筑、办公设备、机械、航空航天等行业,以塑代钢、以塑代木已成为国际流行趋势。

通用工程塑料包括:聚酰胺、聚甲醛、聚碳酸酯、改性聚苯醚、热塑性聚酯、超高分子聚乙烯、甲基戊烯聚合物、乙烯醇共聚物等。

③特种塑料

-般是指具有特种功能,可用于航空、航天等特殊应用领域的塑料。如氟塑料和有机硅具有突出的耐高温、自润滑等特殊功用,增强塑料和泡沫塑料具有高强度高缓冲性等特殊性能,这些塑料都属于特种塑料的范畴。

a.增强塑料:增强塑料原料在外形上可分为粒状(如钙塑增强塑料)、纤维状 (如玻璃纤维或玻璃布增强塑料)、状(如云母增强塑料)三种。按材质可分为布基增强塑料(如碎布增强或石棉增强塑料)、无机矿物填充塑料(如石英或云母填充塑料)、纤维增强塑料(如碳纤维增强塑料)三种。

b.泡沫塑料:泡沫塑料可以分为硬质、半硬质和软质泡沫塑料三种。硬质泡沫塑料没有柔韧性,压缩硬度很大,只有达到-定应力值才产生变形,力解除后不能恢复原状;软质泡沫塑料富有柔韧性,压缩硬度很小,很容易变形,力解除后能恢复原状,残余变形较小;半硬质泡沫塑料的柔韧性和其他性能介于硬质与软质泡沫塑料之间。

也可以去物性表上搜索,里面有挺多值得参考的。

塑料材料在家电行业的应用及相关的论文?

【标题】彩涂板在家电行业的应用
【作者】无
【关键词】彩涂板 家电行业 应用 市场
【刊名】中国涂装 1998--4
【ISSN】1605-9735
【机构】不详
【摘要】国内彩涂板的主要应用领域是建筑行业,但彩涂板在家电行业的使用量逐年增加。目前我国家电业已开始采用彩涂板前期试验。澳柯玛、小天鹅、海尔冰箱、苏州三星、上菱冰箱等,研究改用高光印花彩涂板,其成本将大大降低。另外,一些企业为增加品种而采用彩涂板,由于采用后喷涂线在生产过程中难以
【下载论文】彩涂板在家电行业的应用
【标题】CAD技术在家电行业的推广应用
【作者】郑维智
【关键词】CAD 家电产品 制造 应用
【刊名】家用电器科技 1998--4
【ISSN】1001-957X
【机构】轻工业CAD技术推广应用中心
【摘要】本文通过对我国轻工家电行业应用CAD技术现状的分析,指出轻工业开展CAD技术推广应用工作应达到的目标和采取的措施,以及在开展CAD工作时应注意的四点问题。
【下载论文】CAD技术在家电行业的推广应用
【标题】浅谈改性塑料在家电中的运用
【作者】孙秋山
【关键词】家电行业 改性塑料 双桶洗衣机 全自动洗衣机 行业应用 塑料模具 塑料零部件 彩色电视机
【刊名】家电科技 2005--10
【ISSN】1672-0172
【机构】浙江省家电科研厂
【摘要】近几年来,随着家电行业的发展,塑料在家电行业应用的年均增长速度达到29.5%,成为家电行业仅次干钢材的第二大类材料。一台双桶洗衣机使用各种塑料零部件约7-12kg,有的已达20kg,占洗衣机总重量的1/3以上;一台冰箱或一台全自动洗衣机所需的塑料模具通常超过100副,一台空调器需20多副,一台彩色电视机需50-70副塑料模具。因此,随着塑料改性研究的深入,塑料在家电行业的应用将越来越广。
【下载论文】浅谈改性塑料在家电中的运用
【标题】“新型环保,耐蚀板材在家电行业中的应用”研讨会会议纪要
【作者】无
【关键词】家电行业 环保 纪要 会议 应用 板材 耐蚀 家电企业 市场竞争
【刊名】家用电器 2005--10
【ISSN】1002-5626
【机构】不详
【摘要】在日益激烈的市场竞争条件下,家电加工制造行业已经进入了微利时代。消费市场的逐步规范、消费者消费意识的日趋成熟,能源及原材料供应的紧缺或持续提价等诸多因素,更给家电企业雪上加霜。为了生存和发展,家电企业越来越重视产品的“内在质量”,不断提出更高的追求目标,不断寻找更新的竞争热点。家电产品金属材料的环保和防锈就是引起许多企业关注的问题之一。
【下载论文】“新型环保

急需一篇800到1000字的有关塑料的化学论文

生物降解塑料的发展
[摘 要]近年来,世界工业发达国家十分重视生物降解塑料,特别是原料来自可再生资源或产业废气综合利用(如CO2)的生物降解塑料。我国生物降解塑料的研发和生产均得到了发展,尤其是可再生材料的生物降解塑料的发展更是取得了长足进步。
[关键词]生物降解;塑料;发展;微生物;材料

生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑 料[1]。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的高分子材料。纸是一种典型的生物降解材料,而合成塑料则是典型的高分子材料。因此,生物降解塑料是兼有纸和合成塑料这两种材料性质的高分子材料。生物降解塑料又可分为完全生物降解塑料和破坏性生物降解塑料。
1 国内生物降解塑料产业化情况
20世纪90年代中期,在国家禁白令的支持下,国内出现了一百多条各种类型的生物降解塑料生产线。进入21世纪,我国生物降解塑料的研发和生产均得到了显著的发展,尤其是可再生材料的生物降解塑料的发展更是取得了长足进步。武汉华丽环保科技有限公司生产的由葡萄糖组成的可塑淀粉生物降解塑料,可用于千次性餐具、酒店用品、工业包装等领域,市场推广良好;宁波天安生物材料有限公司生产的一种由微生物合成的可降解的聚羟基脂肪酸酯塑料,具有很好的抗热湿气性能,可以在食品包装上应用;内蒙古蒙西分子材料有限责任公司研制开发的二氧化碳聚合物降解塑料,用在农业地膜上效果很好;台湾瑞旗生物科技股份有限公司用玉米等植物淀粉发酵后,再经过聚合制造出的植物塑料聚乳酸特别适用于餐饮用品、服装制造等领域;浙江海正生物材料股份有限公司研制生产的聚乳酸是一种玉米塑料,可制成高性能的一次性碗、盘、杯、叉、刀、勺等;中科院理化所国家工程塑料中心开发的全生物降解塑料柬丁二酸丁二醇酯,产业化势头尤为迅速,目前已形成超过2万t/a的生产能力[2]。
2 生物降解塑料新产品开发情况
通常降解塑料的定义为:在特定环境条件下,其化学结构发生明显变化,并用标准的测试方法能测定物质性能变化的塑料。按原料生物降解塑料可分为天然生物降解、微生物降解塑料和化学合成生物降解塑料几大类。按降解机理可分为光降解塑料、生物降解、光-生物降解塑料。
近年来,世界工业发达国家十分重视发展生物降解塑料,特别是原料来自可再生资源或产业废气综合利用(如CO2)的生物降解塑料。目前全球研发的生物降解塑料品种已有几十种,可批量生产和工业化生产的品种主要有微生物发酵合成的聚羟基脂肪酸酯(PHA、PHB、PHBV等);化学合成的聚乳酸(PIA)、聚己内酯、二元醇二羧酸脂肪族聚酯(PBS)、脂肪族/芳香族共聚酯、二氧化碳/环氧化合物共聚物(APC)、聚乙烯醇(PVA)等;天然高分子淀粉基塑料及其生物降解塑料共混物、塑料合金等。目前已进入中试或批量生产的品种有PHA(PHB、PHBV、PHBHHX等)、PLA、PBS、APC、改性PVA、淀粉基塑料、淀粉/PVA、PLA、PCL等塑料合金及共混物等。
生物降解塑料又分为天然生物降解塑料、微生物降解塑料和化学合成生物降解塑料[3]。
2.1 生物降解塑料
天然生物降解塑料是指以天然聚合物为原料,可通过各种成型工艺制成生物降解塑料制品的一类材料。这类材料包括由淀粉、纤维素、甲壳素、大豆蛋白等天然聚合物及其各种衍生物和混合物。
2.2 微生物合成生物降解塑料
2.2.1 聚乳酸(PLA)聚乳酸耐水,不能忍受>55 ℃的温度。虽然它不是水溶性的,但是海洋环境中的微生物也能使之降解成二氧化碳和水。这种塑料类似透明的聚苯乙烯,表现出很好的外观(有光泽和透明度),缺点是硬且脆的材料,在大多数实际应用中需要改性。例如,用增塑剂来提高其柔韧性,它可以和许多热塑性塑料一样被加工成纤维、薄膜,热成型或者注塑成型。
2.2.2 聚羟基烷酸酯(PHA)
利用可再生资源得到的生物降解塑料,把脂肪族聚酯和淀粉混合在一起,生产可降解性塑料的技术也已经研究成功。在欧美国家,淀粉和脂肪族聚酯的共混物被广泛用来生产垃圾袋等产品。例如,国际上规模最大、销售最好的是意大利的Novamont公司,其商品名为Mater-bi,公司的产品在欧洲和美国有较大量的应用[4]。
2.2.3 聚己内酯(PCL)
这种塑料具有良好的生物降解性和吸力性能,溶点是62 ℃。分解它的微生物广泛地分布在喜气或厌气条件下。作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用[5]。
3 生物降解材料发展面临的问题
对适用于医学研究的生物降解材料,人们首先关心的是它的降解产物是否具有毒性,以及如何人为地控制降解速度。因此,生物降解材料合理的工艺配方、准确的降解时控性,用后降解的彻底性以及回收利用等技术的进一步提高和完善显得尤为重要。
在组织工程研究领域,比如研究者选用生物降解材料来构建人体的组织或器官,要求不仅有疗效,而且要保证安全、无毒、无刺激性,与人体有良好的生物相容性。
目前,可生物降解材料存在的主要问题:(1) 天然高分子材料及其改性物没有热塑性,多数加工困难,产品强度不高,还未完全达到实用阶段;(2) 价格昂贵,是通用塑料的5~10倍,不易推广应用;(3)可生物降解材料更合理的工艺配方、准确的降解时控性,用后降解的彻底性以及回收利用等技术还有待进一步提高和完善;(4) 一些可生物降解材料的最大问题是只能部分降解,人工合成生物降解材料大多还存在生产工艺复杂、产品性能不稳定的缺陷;(5) 国内外至今尚无统一认可的评价方法和标准[6]。
4 可降解塑料发展动向
随着塑料工业的迅速发展,当前世界塑料总产量已超过1.8亿t,但因废塑料难于降解,而成为环境垃圾。发展可降解塑料能减少白色污染,有显著的经济效益和社会效益。现生产降解塑料的主要国家有美国、意大利、德国、加拿大、日本、中国等。随着PLA等可降解塑料材料的应运而生,在原有聚乙烯等传统不可降解塑料制品中加入适量PLA等生物材料的塑料制品,既可部分实现生物降解,原有的力学性能又没有改变[7]。
生物塑料的耐热温性能不好,很多生物塑料在50~55 ℃就会变形,其应用领域和适用范围因此受到很大限制。进一步改善生物降解塑料产品的性能,将其推广到电子产品、汽车材料领域,真正使生物降解获得大规模推广应用。美国普立万公司一直在为提高生物塑料的耐高热性能而努力,该公司开发的产品,改善了材料的抗冲击性并可在100 ℃以上加工使用的可生物降解塑料技术。总之,可生物降解塑料的耐高温性能正在逐步提升,进一步推广应用条件正在逐步成熟[8]。
5 建议与展望
近年来,随着原料生产和制品加工技术的进步,生物降解材料备受关注。无论是从能源替代、二氧化碳减少,还是从环境保护以及部分解决“三农”问题,都具有重要意义[7]。目前我国生物降解材料发展的状况,在自主知识产权、创新型产品等方面的研发能力、投入量等均待提高,存在生物降解材料的产业化与市场化规模不大、生物降解材料的回收处理系统不很完善等问题,为了解决这些情况,应制订配套的政策及法规。

塑料涂料论文

塑料涂料的研究现状与展望
摘 要:从塑料涂料的成膜基料、涂料性能、施工应用等方面,阐述了国内外塑料涂料的研究现状,并提出了塑料
涂料研究存在的问题与发展要求。
关键词:塑料涂料;涂料性能;涂料应用;现状与展望
0 引 言
随着石油化工与煤化工的发展,高分子材料的合成技术
与新材料的推广应用不断延伸,塑料作为新型非金属材料,在
抗张强度、韧性、尺寸稳定性等方面取得一系列进展。传统的
塑料制品表面抗老化、抗静电、耐划伤、颜填料印痕等问题与
新型塑料制品的功能化、装饰性、安全性等问题共同成为塑料
涂料与涂装的中心内容。塑料的一个重要发展课题就是合金
化。所谓合金化,实际上是多种高分子材料的物理混合,利用
各种高分子材料的优点,互相补充。然而合金化给涂装带来
了新的问题———涂层材料的成膜物树脂与塑料底材之间的匹
配性,正因为如此,目前塑料涂料采用的成膜树脂将日趋多组
分、多官能团化,同时塑料涂料的环境影响也日益受到关注,
加之新型功能性颜填料与助剂的采用,塑料涂料已以全新的
面貌呈现在人们面前。
1 成膜基料的官能化趋势
鉴于塑料底材结构的复合化,与传统的塑料相比,单纯从
氢键值、溶解度参数等角度考察单一树脂与塑料底材之间的
相容性已十分困难。作者在塑料涂装厂对ABS塑料进行涂装
过程中发现,厂方声称的ABS基料耐溶剂性能极差,当涂料中
含有一定的芳烃溶剂时,涂膜干燥过程中出现细细的“银纹”。
经了解,塑料本身掺入大量高抗冲聚苯乙烯改性,而这种情况
目前在塑料涂装市场上非常多见,现在能遵循的规律是表面
张力与结构相似程度,只有成膜物的表面张力比底材低,且成
膜树脂与底材相比具有一定的相容性,涂膜才能附着在塑料
表面。因此,具有低极性的聚丁二烯、聚丙烯酸酯与醇酸改性
氯代烃聚合物等对很多塑料乃至塑料合金都具有极佳的亲
合性。
对于聚乙烯与聚丙烯塑料,氯化聚烯烃的改性仍是目前
较佳的选择。Muenster等[1]用混有高密度聚乙烯的聚亚乙烯
基氯化物作为成膜基料对聚乙烯复合塑料具有极好的粘附
性。Lami等[2]直接采用氯化聚乙烯涂敷在聚乙烯表面,然后
与聚氨酯配套。Menovcik等[3]利用羟基官能化烯烃聚合物与
可与羟基反应的化合物反应制得对烯烃具有良好附着的附着
力促进树脂。巴斯夫公司则利用对聚烯烃进行聚氨酯改性,
在确保对聚烯烃底材附着力的同时,与其他树脂的配套相容
性也得到保证[4]。上述改性树脂从某种意义上说,解决附着
力的根本原因在于结构的相似相亲。Eaztman公司的cp343
系列产品、中海油常州涂料化工研究院的P-18系列等产品
均为氯化烯烃的接枝改性物。目前氯化聚烯烃的丙烯酸酯、
马来酸酐等改性极其活跃,而王小逸等[5]以双戊烯烃聚合物
为母体,丙烯酸单体在引发剂作用下接枝形成苯乙烯-双戊烯
烃共聚物,实际上是利用聚戊二烯在结构上与聚烯烃塑料的
相似性和低表面能状态,所以说,成膜物主体结构与塑料基体
结构的相似性仍是塑料涂料成膜树脂合成追寻的重要手段。
在研究中曾发现,某些羟基丙烯酸树脂作为基料的涂料,利用
脂肪族异氰酸酯作为交联剂在特定的ABS塑料表面涂覆(目
前市场多为合金)几乎没有附着力,而当交联剂改为芳香族异
氰酸酯时,附着力却十分优异。笔者认为,根本原因在于交联
剂转变为芳香族异氰酸酯时,由于成膜后树脂中苯环结构增
多,结构的相似性(多体现在溶解度参数与氢键值上的相近)
增强,所以附着牢度增大。
同样作为结构的相似相亲,环氧-聚酰胺在尼龙底材上的
润湿就是利用涂膜中的聚酰胺与尼龙结构的相似性而产生强
附着[6]。而各种聚氨酯成膜物(丙烯酸聚氨酯、聚酯聚氨酯
等)在聚氨酯塑料上的附着同样与结构相似相关联[7-8]。
除传统的溶剂型合成方法外,等离子聚合[8]、乳液聚合也
成为塑料涂料成膜树脂合成的新方法,而乳液聚合技术是伴
随水性化技术的发展而发展的,在塑料涂料水性化方面起了
相当大的作用。
作为与光固化配套的底漆,塑料涂料用基体树脂除传统
的羟基丙烯酸类外,高软化点、耐溶剂侵蚀的热塑性丙烯酸树
脂成为人们关注的焦点之一。为了提高热塑性树脂的耐溶剂
性,—CN基或微交联特征的硅氧烷的存在是必要的,有时为了
解决配套性,可能在树脂中掺入纤维素类树脂。
总之,塑料涂料用成膜树脂如同塑料本身的复合化一样,
基料组分从单一结构向多组分结构拓展,甚至采用不同软化
点的同类型树脂复合体。依靠单一成膜树脂已很难满足现代
塑料涂料的发展要求,而通过合成技术一次性将同一树脂中
掺入多组官能团且在同一种树脂中实现软、硬段的高度分离
都极其困难,不同结构、不同属性的基料通过物理混合的方法
要简单得多,但是物理混合往往出现相容性问题,这是在塑料
涂料的配方设计过程中需高度关注的。
2 环保型塑料涂料
2·1 粉末涂料
一般来说,粉末涂料由于采用静电涂装,且需高温烘烤交
联成膜,所以在通常情况下塑料并不适合采用粉末涂料涂覆。
然而由于粉末涂料高交联特征,在耐介质等许多方面具有特
定的优势,所以近年来,在如冰箱、空调、小家电等众多领域,
粉末涂料成了新宠。为了实现静电涂装,一般在塑料中注入
导电纤维,比较常见的如尼龙、聚丙烯、玻璃纤维增强塑料等,
涂料品种主要涉及氨基丙烯酸、氨基聚酯等。
2·2 水性涂料
在玩具领域,出于健康、安全方面的考虑,水性化是大势
所趋。Patil等[9]利用亲水性淀粉、水性环氧树脂、蜡乳液、三
聚氰胺-甲醛树脂及氟化表面活性剂等混匀涂覆于聚乙烯膜
表面, 80℃加热24 h后,由于热交联的缘故,涂膜强度、耐水
性及附着力均显著提升。Park等[10]通过氯化聚丙烯与丙烯
酰胺在引发剂作用下接枝共聚,得到的共聚物在聚丙烯表面
具有很好的附着力。利用VeoVa 10 (叔碳酸乙烯酯)与丙烯
酸酯共聚,内、外乳化并存,亲水性的二丙二醇丁醚作成膜助
剂,所得涂料涂覆于聚丙烯板上,涂膜附着力、耐水性均十分
优异[11]。利用磷酸酯与丙烯酸酯反应,用碱中和的方法得到
的聚合物配制铝粉漆,不仅铝粉漆分散、贮存稳定性好,而且
对塑料底材的润湿性好[12-13]。
在研究过程中发现,利用二双键或三双键的丙烯酸酯与
其他柔性丙烯酸单体进行乳液共聚,得到弹性的丙烯酸共聚
物,不仅强度与普通乳液对比明显增强,而且耐水性十分突
出,甚至在PC表面涂覆干燥后在去离子水中煮沸2 h仍不起
泡,而一般的溶剂型聚丙烯酸酯均难达到这种要求。笔者认
为,这些亲水型聚合物表面均含有一定量的亲水性官能团,水
分子可以借助于这些亲水性官能团,十分容易地在膜两边自
由进出,而高聚物本身与塑料底材之间的作用远大于高聚物
与水及塑料底材与水之间的作用,所以即使在煮沸状态下,水
分子对高聚物与塑料底材之间的破坏作用仍比较缓慢,以致
耐水煮时间较长。而一般溶剂型树脂多有一定的耐水性,但
涂层中的缝隙仍能让水分子缓慢进出,随着水温的升高,水分
子运动的动能加大,水分子通过涂膜向底材表面扩散加快,但
在加热状态下水分子向涂膜外表面扩散时,由于缺乏亲水性
官能团的水合化转移,水分子不断向涂膜冲撞,致使涂膜易于
被冲撞而剥落形成气泡。当然水性高分子涂膜的耐水性也仅
局限于不被锈蚀的非金属塑料或玻璃表面,而金属材料由于
易被氧化产生锈蚀而引起涂层疏松导致起泡。
目前,见诸于报导的用于改性水性聚合物成膜后耐水性
的研究主要集中在对聚合物进行疏水性改性(降低表面张
力)、聚合物内交联、立体结构(如二丙烯酸酯与多丙烯酸酯)、
聚合物成膜后自交联(有机硅、酰胺等改性)等[14-15]。为了改
善涂膜成膜后的耐溶剂性,在树脂结构中引入耐溶剂的官能
团如腈基(—CN)等,或采用交联单体。Kosugi和陈伟林
等[16-17]利用苯乙烯与丙烯腈、丙烯酸酯共聚,涂膜的耐水、耐
酸性均得到提高。而王玉香等[18]则利用水分散型的多异氰
酸酯与水性羟基丙烯酸树脂外交联用于ABS及PC、PVC等塑
料的涂装,涂膜的力学性能、耐水性、耐化学性十分理想。Zie-
gler等[19]则在水性双组分体系中引入亲水性的助溶剂辅助成
膜,由于树脂本身的水溶性相对下降,树脂在硬度等方面调节
的空间非常大,以致得到的涂膜综合性能优异,可适应各种塑
料底材涂装要求。
目前水性塑料用涂料的研究十分活跃,但真正进入工业
化生产的规模尚很小,笔者只在汽车、玩具、家电等少数领域
发现有使用水性塑料涂料的情况,而且品种主要集中在聚氨
酯水分散体、丙烯酸乳液与水性双组分丙烯酸酯涂料,究其原
因在于涂料水性化后涂膜综合性能与溶剂型涂料相比尚存在
一定的差距,然而无论从环境方面考虑,还是从节能、节约成
本角度出发,水性体系是关注的重点,随着新的合成技术、新
原材料的拓展,水性塑料涂料的发展空间会相应增大。
2. 3 光固化涂料
相比于粉末涂料和水性化塑料涂料,光固化涂料在塑料
涂装领域的发展显得异常迅捷。目前在摩托车、电动车与家
电等领域,光固化塑料涂料已得到了广泛的推广,相应地推动
了光固化涂料技术本身的进步,包括从单体到助剂与合成技
术的进步。
Hamada等[20]利用甲基丙烯酸甲酯的均聚物与氨基丙烯
酸酯、甲基丙烯酸氧基酯等在光敏剂的引发作用下,得到在
ABS表面涂覆的快干涂层。Yaji等[21]采用含三环癸烷结构的
光敏剂引发聚丙烯酸酯配制丙烯酸涂料,涂覆在聚苯乙烯底
材上,涂层的透光性与表面流平性均非常突出。在聚碳酸酯
表面,采用热与光同时激发固化的双重固化模式,涂膜耐紫外
光性能得到显著改善[22]。而降冰片烯烃聚合物薄膜表面采
用UV固化的聚氨酯改性的氨基丙烯酸酯,在膜中引入二氧化
硅不会影响涂层的透明性,且涂层的耐划伤性优异[23]。在树
脂中引入弹性链段可提高涂膜的附着力与耐冲击性[24];分子
链段中引入含氟的硅氧烷与A-174(γ-甲基丙烯酰氧基丙
基三甲氧基硅烷)及胶体二氧化硅,涂膜的透明性、流平性、防
污性、耐磨性均因交联和表面张力的降低而得到明显改善[25]。
UV固化涂料目前在聚碳酸酯、ABS、聚苯乙烯、聚丙烯等
塑料表面应用较为普遍,但仍存在一些问题:
(1)涂料与底漆(本色漆或金属漆)之间的附着力问题;
(2)罩光漆涂膜放置一段时间易出现雾影,耐湿热性能较差;
(3)与聚氨酯等体系相比,涂层耐水性往往显得不够; (4)涂料
目前主要用于清漆,通过颜料着色对光固化过程影响较大。
光固化残留的自由基影响涂膜的耐黄变性等。
3 功能化涂料
塑料涂料除对塑料制品具有保护功能外,近年来在装饰
及功能化领域取得了一系列进展。利用硅氧烷与环氧-硅酸
酯共聚物与叔胺作用,得到的涂层在聚酯切片上不仅附着力
好,而且耐磨性突出[26-28]。同样对于聚酯片,用丙烯酸-β-
羟乙酯酯化二苯基四羧酸二酐,再与甲基丙烯酸缩水甘油酯
和邻苯基苯基缩水甘油醚反应,涂膜不仅折光指数高,而且耐
磨性好[29]。而利用增滑剂如石蜡或润滑剂,对于含氨基甲酸
酯改性聚亚烷基二醇聚(甲基)丙烯酸酯与氨基甲酯改性的聚
(甲基)丙烯酸酯混合物在光敏剂存在时,利用UV光照射,得
到的涂膜不仅耐划伤、耐候,而且防雾性能好[30]。同样,为了
改善防雾性能,Konno等[31]则利用外乳化法,得到的聚丙烯酸
酯与胶体二氧化硅、具有阴离子特征的碳酸酯-聚氨酯复合,
得到的涂膜对聚烯烃不仅润湿性好,而且具有优良的防雾性。
Brand等[32]发现用低氧透过性的聚硅氧烷涂覆在PET膜上,
氧透过值只有14 mL/(dm2bar);Yamazaki等[33]发现部分锌中
和的聚丙烯酸具有对氧的阻隔性。而Miyasaka[34]则发现聚乙
烯醇和浮型二氧化硅混合物制成的涂膜(涂覆于双轴取向的
聚丙烯膜)水蒸气与氧的渗透性极低,在20℃, 60%相对湿度
及40℃, 90%相对湿度下,分别只有1·5 mL/(m2·24 h·atm)
和4·9 mL/(m2·24 h·atm)(1 atm=101·325 Pa)。
利用橡胶的减震性,将橡胶与聚硅氧烷、可固化聚氨酯等
复合,成膜后由于物件与涂覆底材接触或移动产生的噪音,在
一段时间内保持起始静态摩擦系数,具有减震性[35]。热固性
或紫外光固化的树脂与含氟聚合物通过热固化或紫外光引发
聚合,在聚酯膜上涂覆,具有防反射功能[36]。硅氧烷聚合物
等具有低反射指数的涂料,同样具有防反射功能[37]。研究发
现,氢氧化铝粒子与低玻璃化转变温度的树脂(Tg: -50~
50℃)混合涂覆在聚酯膜表面,具有热辐射功能。
4 特种塑料涂料
塑料涂料除了涂料与塑料之间的作用外,往往还可能存
在与其他介质之间的作用,真空镀膜涂料即是如此,它除了与
塑料接触外,还与金属镀膜层发生作用,这些涂料在金属膜与
塑料底材之间起到桥梁作用。目前真空镀膜底漆主要涉及丙
烯酸、氨酯油及改性聚丁二烯等,主要涉及灯具、塑料镀铬装
饰,有时具有辅助塑料导电、导热之功能。而面漆则主要为丙
烯酸、聚氨酯及聚乙烯醇缩丁醛。孙永泰[38]利用HDI与水作
用形成的多羟基型聚氨酯涂覆在塑料镀铬件的外表面,涂膜
丰满、坚韧,具有良好的耐磨性、耐冲击、耐化学品与耐湿热
性。而氨基丙烯酸涂料、叔碳酸缩水甘油酯改性丙烯酸涂料、
含氟丙烯酸酯聚合物等应用于真空镀膜涂料得到的涂膜往往
具有高硬度、丰满、耐污染等特征[39-41]。近年来,紫外光固化
涂料在真空镀膜领域中取得了较好的应用效果,为了降低涂
膜表面的缺陷,改善涂膜的性能,通常在涂料中加入少量惰性
溶剂。与此同时,热固化与光固化同时存在于真空镀膜涂料
中,涂膜的交联密度、硬度与耐磨性均能得到改善,而且涂膜
外观更好。环氧改性对塑料镀银附着力的提升十分有效,Ozu
等利用四甲氧基硅烷部分缩合物(Me Silicate51)与缩水甘油
(EpiolOH)酯交换反应,再与2-羟乙基乙烯二胺-异佛尔酮
二胺-异佛尔酮二异氰酸酯-聚碳酸酯二醇(PlaccelCD220)
共聚物反应,得到的底漆喷涂于ABS板上,在80℃干燥
10 min,对ABS和镀银镜面附着力高[42]。
5 塑料涂料研究存在的问题
到目前为止,塑料涂料研究大多数停留在配方性能测试
阶段,由于塑料对溶剂的敏感性不同,对于溶剂型涂料,涂料
中的溶剂或多或少对塑料底材存在侵蚀性,塑料与涂料界面
之间容易发生互相渗透、扩散,导致物理与化学作用共存,加
上多数塑料本身的使用寿命较短,塑料涂料的时效性和涂料
对塑料本身应用改变的影响程度常被忽视,而这些对塑料制
品的应用往往十分重要。一些高结晶度的工程塑料,如聚甲
醛、聚砜等在没有对塑料进行表面处理时,直接涂覆涂料一般
比较困难,有必要寻找到与这些材料之间亲和性较好的化合
物,开发出能直接在塑料表面涂装的涂料,减少表面处理带来
的环境与成本问题。

求(废)塑料的回收及利用论文

摘要:系统总结国内外废旧塑料的主要回收利用技术,针对目前我国回收处理废旧塑料的现状,指出提高分类筛选水平,吸收开发关键技术,是我国回收处理废旧塑料的必要途径。由于治理白色污染是个庞大的系统工程,政府部门须在制定法规和加强管理的同时,提高全社会的科技意识、环保意识和参与意识,这样才是减少和消除白色污染,提高资源综合利用水平的根本途径。
关键词:废塑料,白色污染,回收,再生,热解,技术进展

废旧塑料通常以填埋或焚烧的方式处理。焚烧会产生大量有毒气体造成二次污染。填埋会占用较大空间;塑料自然降解需要百年以上;析出添加剂污染土壤和地下水等。因此,废塑料处理技术的发展趋势是回收利用,但目前废塑料的回收和再生利用率低。究其原因,有管理、政策、回收环节方面的问题,但更重要的是回收利用技术还不够完善。
废旧塑料回收利用技术多种多样,有可回收多种塑料的技术,也有专门回收单一树脂的技术。近年来,塑料回收利用技术取得了许多可喜的进展,本文主要针对较通用的技术做一总结。
1 分离分选技术
废旧塑料回收利用的关键环节之一是废弃塑料的收集和预处理。尤其我国,造成回收率低的重要原因是垃圾分类收集程度很低。由于不同树脂的熔点、软化点相差较大,为使废塑料得到更好的再生利用,最好分类处理单一品种的树脂,因此分离筛选是废旧塑料回收的重要环节。对小批量的废旧塑料,可采用人工分选法,但人工分选效率低,将使回收成本增加。国外开发了多种分离分选方法。
1.1 仪器识别与分离技术
意大利Govoni公司首先采用X光探测器与自动分类系统将PVC从相混塑料中分离出来[1]。美国塑料回收技术研究中心研制了X射线荧光光谱仪,可高度自动化的从硬质容器中分离出PVC容器。德国Refrakt公司则利用热源识别技术,通过加热在较低温度下将熔融的PVC从混合塑料中分离出来[1]。
近红外线具有识别有机材料的功能,采用近红外线技术[1]的光过滤器识别塑料的速度可达2000次/秒以上,常见塑料(PE、PP、PS、PVC、PET)可以明确的被区别开来,当混合塑料通过近红外光谱分析仪时,装置能自动分选出5种常见的塑料,速度可达到20~30片/min。
1.2 水力旋分技术
日本塑料处理促进会利用旋风分离原理和塑料的密度差开发了水力旋风分离器。将混合塑料经粉碎、洗净等预处理后装入储槽,然后定量输送至搅拌器,形成的浆状物通过离心泵送入旋风分离器,在分离器中密度不同的塑料被分别排出。美国Dow化学公司也开发了类似的技术,它以液态碳氢化合物取代水来进行分离,取得了较好的效果[2]。
1.3 选择性溶解法
美国凯洛格公司和Rensselaser工学院共同开发了一种利用溶剂选择性溶解分离回收废塑料的技术。将混合塑料加入二甲苯溶剂中,它可在不同的温度下选择性溶解、分离不同的塑料,其中的二甲苯可循环使用,且损耗小[1,3]。
比利时Solvay SA公司开发了Vinyloop技术,采用甲乙酮作溶剂,分离回收PVC,回收到的PVC与新原料密度相差无几,但颜色略呈灰色。德国也有溶剂回收的Delphi技术,所用的酯类和酮类溶剂比Vinyloop技术少得多。
1.4 浮选分离法
日本一家材料研究所采用普通浸润剂,如木质素磺酸钠、丹宁酸、Aerosol OT和皂草甙等,成功地将PVC、PC(聚碳酸酯)、POM(聚甲醛)和PPE(聚苯醚)等塑料混合物分离开来[4]。
1.5 电分离技术[5]
用摩擦生电的方法分离混合塑料(如PAN、、PE、PVC和PA等)。其原理是两种不同的非导电材料摩擦时,它们通过电子得失获得相反的电荷,其中介电常数高的材料带正电荷,介电常数低的材料带负电荷。塑料回收混杂料在旋转锅中频繁接触而产生电荷,然后被送如另一只表面带电的锅中而被分离。
2 焚烧回收能量
聚乙烯与聚苯乙烯的燃烧热高达46000kJ/kg,超过燃料油的平均值44000 kJ/kg,聚氯乙烯的热值也高达18800 kJ/kg。废弃塑料燃烧速度快,灰分低,国外用之代替煤或油用于高炉喷吹或水泥回转窑。由于PVC燃烧会产生氯化氢,腐蚀锅炉和管道,并且废气中含有呋喃,二恶英等。美国开发了RDF技术(垃圾固体燃料),将废弃塑料与废纸,木屑、果壳等混合,既稀释了含氯的组分,而且便于储存运输。对于那些技术上不可能回收(如各种复合材料或合金混炼制品)和难以再生的废塑料可采用焚烧处理,回收热能。优点是处理数量大,成本低,效率高。弊端是产生有害气体,需要专门的焚烧炉,设备投资、损耗、维护、运转费用较高。
3 熔融再生技术
熔融再生是将废旧塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。简单再生主要回收树脂厂和塑料制品厂的边角废料以及那些易于挑选清洗的一次性消费品,如聚酯饮料瓶、食品包装袋等。回收后其性能与新料差不多。
复合再生的原料则是从不同渠道收集到的废弃塑料,有杂质多、品种复杂、形态多样、脏污等特点,因此再生加工程序比较繁杂,分离技术和筛选工作量大。一般来说,复合回收的塑料性质不稳定,易变脆,常被用来制备较低档次的产品。如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。
4 裂解回收燃料和化工原料
4.1 热裂解和催化裂解技术
由于裂解反应理论研究的不断深入[6-11],国内外对裂解技术的开发取得了许多进展。裂解技术因最终产品的不同分为两种:一种是回收化工原料(如乙烯、丙烯、苯乙烯等)[12],另一种是得到燃料(汽油、柴油、焦油等)。虽然都是将废旧塑料转化为低分子物质,但工艺路线不同。制取化工原料是在反应塔中加热废塑料,在沸腾床中达到分解温度(600~900℃),一般不产生二次污染,但技术要求高,成本也较高。裂解油化技术则通常有热裂解和催化裂解两种。
日本富士循环公司的将废旧塑料转化为汽油、煤油和柴油技术,采用ZSM-5催化剂,通过两台反应器进行转化反应将塑料裂解为燃料。每千克塑料可生成0.5L汽油、 0.5L煤油和柴油。美国Amoco公司开发了一种新工艺,可将废旧塑料在炼油厂中转变为基本化学品。经预处理的废旧塑料溶解于热的精炼油中,在高温催化裂化催化剂作用下分解为轻产品。由PE回收得LPG、脂肪族燃料;由PP回收得脂肪族燃料,由PS可得芳香族燃料。Yoshio Uemichi等人[13]研制了一种复合催化体系用于降解聚乙烯,催化剂为二氧化硅/氧化铝和HZSM-5沸石。实验表明,这种催化剂对选择性制取高质量汽油较有效,所得汽油产率为58.8%,辛烷值94。
国内李梅等[14]报道废旧塑料在反应温度350~420℃,反应时间2~4s,可得到MON73的汽油和SP-10的柴油,可连续化生产的工艺。李稳宏等[3]进行了废塑料降解工艺过程催化剂的研究。以PE、PS及PP为原料的催化裂化过程中,理想的催化剂是一种分子筛型催化剂,表面具有酸性,操作温度为360℃,液体收率90%以上,汽油辛烷值大于80。刘公召[15]研究开发了废塑料催化裂解一次转化成汽油、柴油的中试装置,可日产汽油柴油2t,能够实现汽油、柴油分离和排渣的连续化操作,裂解反应器具有传热效果好,生产能力大的特点。催化剂加入量1~3%,反应温度350~380℃,汽油和柴油的总收率可达到70%,由废聚乙烯、聚丙烯和聚苯乙烯制得的汽油辛烷值分别为72、77和86,柴油的凝固点为3,-11,-22℃,该工艺操作安全,无三废排放。袁兴中[16]针对釜底清渣和管道胶结的问题,研究了流化移动床反应釜催化裂解废塑料的技术。为实现安全、稳定、长周期连续生产,降低能耗和成本,提高产率和产品质量打下了基础。
将废料通过裂解制得化工原料和燃料,是资源回收和避免二次污染的重要途径。德国、美国、日本等都有大规模的工厂,我国在北京、西安、广州也建有小规模的废塑料油化厂,但是目前尚存在许多待解决的问题。由于废塑料导热性差,塑料受热产生高黏度融化物,不利于输送;废塑料中含有PVC导致HCl产生,腐蚀设备的同时使催化剂活性降低;碳残渣粘附于反应器壁,不易清除,影响连续操作;催化剂的使用寿命和活性较低,使生产成本高;生产中产生的油渣目前无较好的处理办法等等。国内关于热解油化的报道还有很多[43-54],但如何吸收已有的成果,攻克技术难点,是我们急需要做的工作。
4.2 超临界油化法
水的临界温度为374.3℃,临界压力为22.05Mpa。临界水具有常态下有机溶液的性能,能溶解有机物而不能溶解无机物,而且可与空气、氧气、氮气、二氧化碳等气体完全互溶。日本专利有用超临界水对废旧塑料(PE、PP、PS等)进行回收的报告,反应温度为400~600℃,反应压力25Mpa,反应时间在10min以下,可获得90%以上的油化收率。用超临界水进行废旧塑料降解的优点是很明显的:水做介质成本低廉;可避免热解时发生炭化现象;反应在密闭系统中进行,不会给环境带来新的污染;反应快速,生产效率高等。邱挺等[17]总结了超临界技术在废塑料回收利用中的进展。
4.3 气化技术
气化法的优点在于能将城市垃圾混合处理,无需分离塑料,但操作需要高于热分解法的高温(一般在900℃左右)。德国Espag公司的Schwaize Pumpe炼油厂每年可将1700t废塑料加工成城市煤气。RWE公司计划每年将22万吨褐煤、10万吨塑料垃圾和城镇石油加工厂产生的石油矿泥进行气化。德国Hoechst公司采用高温Winkler工艺将混合塑料气化,再转化成水煤气作为合成醇类的原料。
4.4 氢化裂解技术
德国Vebaeol公司组建了氢化裂解装置,使废塑料颗粒在15~30Mpa,470℃下氢解,生成一种合成油,其中链烷烃60%、环烷烃30%、芳香烃为1%。这种加工方法的能量有效利用率为88%,物质转化有效率为80%。
5 其他利用技术
废旧塑料还有着广泛的用途。美国得克萨斯州立大学采用黄砂、石子、液态PET和固化剂为原料制成混凝土,Bitlgosz [18] 将废塑料用作水泥原材料。解立平等[19]利用废旧塑料与木料、纸张等制备中孔活性炭,雷闫盈等[20报道应用废旧聚苯乙烯制涂料,李玲玲[21]报道塑料可变成木材。宋文祥[22]介绍了国外用HDPE作原料,通过一种特殊的方法,使长度不同的玻璃纤维在模具内沿着物料流向的轴向同向,从而生产高强度塑料枕木。蒲廷芳[23]等使用废旧聚乙烯制高附加值的聚乙烯蜡。李春生等[24]报道,聚苯乙烯与其他热塑性塑料相比,具有熔融粘度小,流动性大的特点,因此熔融后可以很好地浸润所接触的表面而起到良好的粘接作用。张争奇等[25]用废塑料改性沥青,将某一种或几种塑料按一定比例均匀溶于沥青中,使沥青的路用性能得到改善,从而提高沥青路面质量,延长路面寿命。
结束语
治理白色污染是个庞大的系统工程,需要各部门,各行业的共同努力,需要全社会在思想上和行动上的共同参与和支持,有赖于全民科技意识、环保意识的提高。政府部门在制定法规加强管理的同时,可把发展环保技术和环保产业作为刺激经济和扩大就业的重要渠道,使废塑料的收集、处理及回收利用产业化。目前我国回收和加工企业分散,规模小,很多国内外塑料回收与加工的新技术和新设备无法推广实施,回收加工产品质量低下,因此对塑料回收企业应进行规范化管理,以提高其科技含量和经济效益。在回收利用的同时,更需研究开发可环境消纳塑料,寻求切实可行的替代品。

上一篇:议论文三要素及其概念

下一篇:9月评奖论文多久发