欢迎来到学术参考网
当前位置:发表论文>论文发表

快速成型技术论文

发布时间:2023-12-08 22:31

快速成型技术论文

快速成型技术及其向产品化生产发展所面临的技术问题

作者:梁江波 葛正浩 厉成龙

前言 在新产品的开发过程中,总是需要在投入大量资金组织加工或装配之前对所设计的零件或整个系统加工一个简单的例子或原型。这样做主要是因为生产成本昂贵,而且模具的生产需要花费大量的时间准备,因此,在准备制造和销售一个复杂的产品系统之前,工作原型可以对产品设计进行评价、修改和功能验证。 一个产品的典型开发过程是从前一代的原型中发现错误,或从进一步研究中发现更有效和更好的设计方案,而一件原型的生产极其费时,模具的准备需要几个月,因此一个复杂的零件用传统方法加工非常困难。 快速成型(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其它方法将材料堆积而形成实体零件。由于它把复杂的三维制造转化为一系列二维制造的叠加。因而可以在不用模具和工具的条件下生成几乎任何复杂的零部件,极大地提高了生产效率和制造柔性。 一个更为人们关注的问题是一个产品从概念到可销售成品的流程速度。众所周知,在市场竞争中,产品在竞争对手之前进入市场更为有利可图并能享有更大的市场氛围。同时,还有一个更为令人关心的问题是产品的高质量。由于这些原因,努力使高质量的产品快速进人市场就显得极为重要。 快速成型技术问世以来,已实现了相当大的市场,发展非常迅速。人们对材料逐层添加法这种新的制造方法已逐步适应。该技术通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 1快速成型技术的优点 1)快速成型作为一种使设计概念可视化的重要手段,计算机辅助设计零件的实物模型可以在很短时间内被加工出来,从而可以很快对加工能力和设计结果进行评估。
2)由于快速成型技术是将复杂的三维型体转化为两维截面来解决,因此,它能制造任意复杂型体的高精度零件,而无须任何工装模具。
3)快速成型作为一种重要的制造技术,采用适当的材料,这种原型可以被用在后续生产操作中以获得最终产品。
4)快速成型操作可以应用于模具制造,可以快速、经济地获得模具。
5)产品制造过程几乎与零件的复杂性无关,可实现自由制造,这是传统制造方法无法比拟的。 2快速成型的基本原理 基于材料累加原理的快速成型操作过程实际上是一层一层地离散制造零件。为了形象化这种操作,可以想象一整条面包的结构是一片面包落在另一片面包之上一层层累积而成的。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,区别是制造每一层的方法和材料不同而已。 2. 1快速成型的一般工艺过程原理 2.1.1三维模型的构造 在三维CAD设计软件(如Pro/E\UG\SolidWorks\SolidEdge等)中获得描述该零件的CAD文件,如图1(a)中所示的三维零件。目前一般快速成型支持的文件输出格式为5TL模型,即对实体曲面近似处理,即所谓面型化(Tessallation)处理,是用平面三角面片近似模型表面。这样处理的优点是大大地简化了GAD模型的数据格式,从而便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的准标准,每个三角面片用4个数据项表示,即3个顶点坐标和法向矢量,而整个CAD模型就是这样一组矢量的集合。 在三维CAD设计软件对模型进行面型化处理时,一般软件系统中有输出精度控制参数,通过控制该参数,可减小曲面近似处理误差。如Pro/E软件是通过选定弦高值(eh-chord height)作为逼近的精度参数,如图1为一球体,给定的两种ch值所转化的情况。对于一个模型,软件中给定一个选取范围,一般情况下这个范围可以满足工程要求。但是,如果该值选的太小,要牺牲处理时间及存贮空间,中等复杂的零件都要数兆甚至数十兆左右的存贮空间。并且这种数据转换过程中无法避免地产生错误,如某个三角形的顶点在另一三角形边的中间、三角形不封闭等问题是实践中经常遇到的,这给后续数据处理带来麻烦,需要进一步检查修补。

图1 不同ch值时的效果
(a) ch=0.05 (b) ch=0.22.1.2三维模型的离散处理 通过专用的分层程序将三维实体模型(一般为5TL模型)分层,分层切片是在选定了制作(堆积)方向后,需对CAD模型进行一维离散,获取每一薄层片截面轮廓及实体信息。通过一簇平行平面沿制作方向与CAD模型相截,所得到的截面交线就是薄层的轮廓信息,而实体信息是通过一些判别准则来获取的。平行平面之间的距离就是分层的厚度,也就是成型时堆积的单层厚度。在这一过程中,由于分层,破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,分层切片后所获得的每一层信息就是该层片上下轮廓信息及实体信息,而轮廓信息由于是用平面与CAD模型的STL文件(面型化后的CAD模型)求交获得的,所以轮廓是由求交后的一系列交点顺序连成的折线段构成,所以,分层后所得到的模型轮廓已经是近似的,而层层之间的轮廓信息已经丢失,层厚大,丢失的信息多,导致在成型过程中产生了型面误差。 3快速成型的工艺方法 目前快速成型主要工艺方法及其分类见图2所示。文章仅介绍目前工业领域较为常用的工艺方法。

图2 目前快速成型主要工艺方法及其分类3.1熔积成型法(Fused Deposition Modeling) 如图4所示,在熔积成型法( FDM)的过程中,龙门架式的机械控制喷头可以在工作台的两个主要方向移动,工作台可以根据需要向上或向下移动。热塑性塑料或蜡制的熔丝从加热小口处挤出。最初的一层是按照预定的轨迹以固定的速率将熔丝挤出在泡沫塑料基体上形成的。当第一层完成后,工作台下降一个层厚并开始迭加制造一层。FDM工艺的关键是保持半流动成型材料刚好在熔点之上,通常控制在比熔点高1℃左右。

1,热塑性塑料或蜡制熔丝;2,可在x-y平面移动的FDM喷头;3,塑料模型;4,不固定基座;5,提供熔丝FDM制作复杂的零件时,必须添加工艺支撑。如图5(a)的高度,下一层熔丝将铺在没有材料支撑的空间。解决的方法是独立于模型材料单独挤出一个支撑材料,支撑材料可以用低密度的熔丝,比模型材料强度低,在零件加工完成后可以将它拆除。 在FDA4机器中层的厚度由挤出丝的直径决定,通常是从0. 50mm到0. 25mm(从0. 02in到0. O1 in)这个值代表了在垂直方向所能达到的最好的公差范围。在x-y平面,只要熔丝能够挤出到特征上,尺寸的精确度可以达到0. 025mm(1in)。 FDM的优点是材料的利用率高,材料的成本低,可选用的材料种类多,工艺干净、简单、易于操作且对环境的影响小。缺点是精度低,结构复杂的零件不易制造,表面质量差,成型效率低,不适合制造大型零件。该工艺适合于产品的概念建模以及它的形状和功能测试,中等复杂程度的中小成型,由于甲基丙烯酸ABS材料具有较好的化学稳定型,可采用伽马射线消毒,特别适于医用。

图5 快速成型支撑结构图
(a)有一个突出截面需要支撑材料的零件;(b)在快速成型机器中常用的支撑结构3. 2光固化法(Stereolithography ) 光固化法是目前应用最为广泛的一种快速成型制造工艺,它实际上比熔积法发展的还早。光固化采用的是将液态光敏树脂固化(硬化)到特定形状的原理。以光敏树脂为原料,在计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态树脂逐点扫描,使被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。 成型开始时工作台在它的最高位置(深度a),此时液面高于工作台一个层厚,零件第一层的截面轮廓进行扫描,使扫描区域的液态光敏树脂固化,形成零件第一个截面的固化层。然后工作台下降一个层厚,使先固化好的树脂表面再敷上一层新的液态树脂然后重复扫描固化,与此同时新固化的一层牢固地粘接在前一层上,该过程一直重复操作到达到b高度。此时已经产生了一个有固定壁厚的圆柱体环形零件。这时可以注意到工作台在垂直方向下降了距离ab。到达b高度后,光束在x-y面的移动范围加大从而在前面成型的零件部分上生成凸缘形状,一般此处应添加类似于FDM的支撑。当一定厚度的液体被固化后,该过程重复进行产生出另一个从高度b到c的圆柱环形截面。但周围的液态树脂仍然是可流动的,因为它并没有在紫外线光束范围内。零件就这样由下及上一层层产生。而没有用到的那部分液态树脂可以在制造别的零件或成型时被再次利用。可以注意到光固化成型也像FDM成型法一样需要一个微弱的支撑材料,在光固化成型法中,这种支撑采用的是网状结构。零件制造结束后从工作台上取下,去掉支撑结构,即可获得三维零件。 光固化成型所能达到的最小公差取决于激光的聚焦程度,通常是0.0125mm(5in)。倾斜的表面也可以有很好的表面质量。光固化法是第一个投人商业应用的RF(快速成型)技术。目前全球销售的SL(光固化成型)设备约占Rl'设备总数的70%左右。SL(光固化成型)工艺优点是精度较高,一般尺寸精度控制在10. 1 mm;表面质量好,原材料的利用率接近100%,能制造形状特别复杂、特别精细的零件,设备的市场占有率很高。缺点是需要设计支撑,可以选择的材料种类有限,容易发生翘曲变形,材料价格较贵。该工艺适合成型制造比较复杂的中小件。 3. 3激光选区烧结(Selective Laser Sinering) 激光选区烧结(Selective Laser Sintering,简称SLS)是一种将非金属(或普通金属)粉末有选择地烧结成单独物体的工艺。该法采用CO:激光器作为能源,目前使用的在加工室的底部装备了两个圆筒: 1)一个是粉末补给筒,它内部的活塞被逐渐地提升通过一个滚动机构给零件造型筒供给粉末;
2)另一个是零件造形筒,它内部的活塞(工作台)被逐渐地降低到熔结部分形成的地方。
首先在工作台上均匀铺上一层很薄(l00~200μm)的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,从而使粉末固化成截面形状,一层完成后工作台下降一个层厚,滚动铺粉机构在已烧结的表面再铺上一层粉末进行下一层烧结。未烧结的粉末仍然是松散的保留在原来的位置,支撑着被烧结的部分,它辅助限制变形,无需设计专门的支撑结构。这个过程重复进行直到制造出整个三维模型。全部烧结完后去掉多余的粉末,再进行打磨、烘干等处理后便获得需要的零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行直接烧结的工艺正在实验研究阶段。它可以直接制造工程材料的零件,具有诱人的前景。
SLS工艺的优点是原型件的机械性能好,强度高;无须设计和构建支撑;可选用的材料种类多;原材料的利用率接近100% ,缺点是原型表面粗糙;原型件疏松多孔,需要进行后处理;能量消耗高;加工前需要对材料预热2h,成型后需要5~lOh的冷却,生产效率低;成型过程需要不断充氮气,以确保烧结过程的安全性,成本较高;成型过程产生有毒气体,对环境有一定的污染。SLS工艺特别适合制作功能测试零件。由于它可以采用各种不同成分的金属粉末进行烧结,进行渗铜等后处理,因而其制造的原型件可具有与金属零件相近的机械性能,故可用于直接制造金属模具。由于,该工艺能够直接烧结蜡粉,与熔模铸造工艺相接特别适合进行小批量比较复杂的中小零件的生产。 3.4叠层制造(Lamited Object Manufacturing) LOM(叠层制造)工艺将单面涂有热溶胶的纸片通过加热辊加热粘接在一起,位于上方的激光器按照CAD分层模型所获数据,用激光束将纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置和下面已切割层粘合在一起,激光束再次切判,这样反复逐层切割一粘合一切割,直到整个零件模型制作完成。该法只需切割轮廓,特别适合制造实心零件。一旦零件完成.多余的材料必须手动去除,此过程可以通过用激光在三维零件周围切割一些方格形小孔而简单化。 L0M工艺优点是无须设计和构建支撑;激光束只是沿着物体的轮廓扫描,无需填充扫描,成型效率高;成型件的内应力和翘曲变形小;制造成本低。缺点是材料利用率低;表面质量差;后处理难度大,尤其是中空零件的内部残余废料不易去除;可以选择的材料种类有限,目前常用的主要是纸;对环境有一定的污染。LOM工艺适合制作大中型成型件,翘曲变形小和形状简单的实体类零件。通常用于产品设计的概念建模和功能测试零件,且由于制成的零件具有木质属性,特别适用于直接制作砂型铸造模。 4 快速成型技术在向产品生产化发展中所存在的主要问题 在制造业日趋国际化的状况下,缩短产品开发周期和减少开发新产品投资风险,成为企业赖以生存的关键。因此,快速成型、快速制模、快速制造技术将会得到进一步发展。 4. 1快速成型技术研究中存在的问题。 1)材料问题.目前快速成型技术中成型材料的成型性能大多不太理想,成型件的物理性能不能满足功能性、半功能性零件的要求,必须借助于后处理或二次开发刁'能生产出令人满意的产品。由于材料技术开发的专门性,一般快速成型材料的价格都比较贵,造成生产成本提高。 2)高昂的设备价格.快速成型技术是综合计算机、激光、新材料、CAD/CAM集成等技术而形成的一种全新的制造技术,是高科技的产物,技术含量较高,所以,目前快速成型设备的价格较贵,限制了快速成型技术的推广应用。 3)功能单一.现有快速成型机的成型系统都只能进行一种工艺成型,而且大多数只能用一种或少数几种材料成型。这主要是因为快速成型技术的专利保护问题,各厂家只能生产自己开发的快速成型工艺成型设备,随着技术的进步,这种保护体制已成为快速成型技术集成的障碍。 4)成型精度和质量问题.由于快速成型的成型工艺发展还不完善,特别是对快速成型软件技术的研究还不成熟,目前快速成型零件的精度及表面质量大多不能满足工程直接使用的需要,不能作为功能性零件,只能作原型使用。为提高成型件的精度和表面质量,必须改进成型工艺和快速成型软件。 5)应用问题.虽然快速成型技术在航空航天、汽车、机械、电子、电器、医学、玩具、建筑、艺术品等许多领域都已获得了广泛应用,但大多仅作为原型件进行新产品开发及功能测试等,如何生产出能直接使用的零件是快速成型技术面临的一个重要问题。随着快速成型技的进一步推广应用,直接零件制造是快速成型技术发展的必然趋势。 6)软件问题。随着快速成型技术的不断发展,快速成型技术的软件问题越来越突出,快速成型软件系统不但是实现离散/堆积成型的重要环节,对成型速度,成型精度,零件表面质量等方面都有很大影响,软件问题已成为快速成型技术发展的关键问题。 4. 2快速成型技术软件系统存在的问题 1)快速成型软件大多是随机安装,无法进行二次开发;
2)各公司的软件都是自行开发,没有统一的数据接口;
3)随机携带的快速成型软件都只能完成一种工艺的数据处理和控制成型;
4)已商品化的通用性软件价格较贵,功能单一,只能进行模型显示、加支撑、错误检验与修正等中的一种或几种功能,而且也存在数据接口问题,不易集成;
5)商品化的软件还不完善,不能满足当前快速成型技术对成型速度、成型精度和质量的要求;
6)当前的数据转换模型缺陷较多,对CAD模型的描述不够精确,从而影响了快速成型的成型精度和质里。 5快速成型技术的发展方向 目前国内外快速成型的研究、开发的重点是快速成型技术的基本理论、新的快速成型方法、新材料的开发、模具制作技术、金属零件的直接制造、生物技术与工程的开发与应用等。另外,还要追求RPM(快速成型制造)的更快的制造速度、更高的制造精度、更高的可靠性,使RPM设备的安装使用外设化,操作智能化;使RPM设备的安装和使用变得非常简单,不需专门的操作人员。具体说来,有以下几点: 1)采用金属材料和高强度材料直接成型是RPM重要发展方向,采用金属材料和高强度材料直接制成功能零件是RPM(快速成型制造)一个重要发展方向。美国Michigan大学的Manzumd采用大功率激光器进行金属熔焊直接成型钢模具;Stanford大学的Print。用逐层累加与五座标数控加工结合方法,用激光将金属直接烧结成型,可获得与数控加工相近的精度。 2)不同制造目标相对独立发展。从制造目标来说RPM(快速成型制造)主要用于快速概念设计成型制造、快速模具成型制造、快速功能测试成型制造及快速功能零件制造。由于快速概念型制造和快速模具型制造的巨大市场和技术可行性,将来这两个方面将是研究和商品化的重点。由于彼此特点有较大差距,两者将是相对独立发展的态势,快速测试型制造将附属于快速概念型制造。快速功能零件制造将是发展的一个重要方向,但技术难度很大,在今后的很长一段时间内,仍将局限于研究领域。 3)向大型制造与微型制造进军。由于大型模具的制造难度和RPM(快速成型制造)在模具制造方面的优势,可以预测,将来的RPM市场将有一定比例为大型原型制造所占据。与此成鲜明对比的将是RPM(快速成型制造)向微型制造领域的进军。SL技术的一个重要发展方向是微米印刷(Microlithography) ,用来制造微米零件( Microseale Parts)。而针对我国的具体国情,快速成型技术今后的主要发展方向有:1)成型工艺、成型设备和成型材料的研发与改进;2)直接快速成型的金属模具制造技术;3)基于因特网的分散化快速原型、快速模具的网络制造技术研究;4)与生物技术相结合;5)进一步完善软件的功能. 6 结束语 快速成型的出现把传统的加工带入全新的数字化领域,要让快速成型与制造技术得到越来越广泛、深人的应用,应从各个方面着手完善和发展该系统,进一步拓宽该技术的应用范围。
文秘杂烩网

毕业论文:浅谈快速成型技术的应用 (模具类

摘要:介绍快速成型技术的原理,重点讨论了与快速成型相关的技术,并试图将此技术充分应用于产品设计评价,以期缩短产品的开发周期。

关键词:快速成型;RP;反求工程

引言随着科技进步和全球市场一体化的形成,现在工业正面临产品的生命周期越来越短的代写论文问题,作为一种新产品开发的重要手段,快速成型能够迅速将设计思想转化为产品的现代先进制造技术。它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段,提高产品研发的效率。

1快速成型技术原理在工业产品设计过程中,设计师往往希望能快速由三维CAD模型,得到产品的实物模型,快速成型技术可以满足这种需求。快速成型(Rapid Prototyping,RP)技术是一种基于离散/堆积成型思想的新型成型技术,它根据零件或物体的三维模型数据,快速、精确地制造出零件或物体的实体模型。

2关键技术2.1制造工艺目前,世界上已有几十种不同的快速成型工艺方法,比较成熟的就有十余种。其中光固化成型法(Stereo Lithography Apparatus,SLA)、叠层实体制造法(Laminated Object Manufactur-ing,LOM)、熔融沉积法(Fused Deposition Model-ing,FDM)、选择性激光烧结法(Selective LaserSintering,SLS)和3DP(Three DimensionalPrinting and Gluing,也称3DPG)五种方法,在世界范围内应用最为广泛。对于RP制造工艺的研究,一方面是在原有技术基础上进行改进,另一方面是研究新的成型技术。新的成型方法,如三维微结构制造、生物活性组织的工程化制造、激光三维内割技术、层片曝光方式等。2.2成型材料成型材料是决定快速成型技术发展的基本要素之一,它直接影响到原型的精度、物理化学性能以及应用等。与RP制造的4个目标(概念型、测试型、模具型、功能零件)相适应,使用的材料不同,概念型对材料成型精度和物理化学特性要求不高,主要要求成型速度快。如对光固化树脂,要求较低的临界曝光功率、较大的穿透深度和较低的粘度。测试型对于材料成型后的强度、刚度、耐温性、抗蚀性等有一定要求,以满足测试要求。如果用于装配测试,则对于材料成型的精度还有一定要求。模具型要求材料适应具体模具制造要求,如对于消失模铸造用原型,要求材料易于去除。快速功能零件要求材料具有较好的力学性能和化学性能。从解决的方法看,一个是研究专用材料以适应专门需要;另一个是根据用途分类,研究几类通用材料以适应多种需要。2.3加工精度影响成型件精度的主要因素有两方面:一是由CAD模型转换成STL格式文件以及随后的切片处理所产生的误差;二是成型过程中制件翘曲变形,成型后制件吸入水分,以及由于温度和内应力变化等所造成的无法精确预计的变形。为了解决第一类问题,正在研制直接切片软件和自适应切片软件。所谓直接切片是不将CAD模型转换成STL格式文件,而直接对CAD模型进行切片处理,得到模型的各截面层轮廓信息,从而可以减少三角面近似化带来的误差,所谓自适应切片是快速成型机能根据成型零件表面的曲率和斜率自动调整切片的厚度,从而得到高品质的光滑表面。为解决第二类问题,正在研究、开发新的成型方法、新的成型材料及成型件表面处理方法,使成型过程中制件的翘曲变形小,成型后能长期稳定不变形。2.4与RP技术相关软件软件是RP系统的灵魂,其中作为CAD到RP接口的数据转换和处理软件是其关键。不同CAD系统所采用的内部数据格式不同,RP系统无法一一适从,这就要求有一种中间数据格式既便RP系统接受又便于不同CAD系统生成,STL(Stereo Lithography)格式应运而生了,STL文件是用大量空间小三角形面片来近似逼近实体模型。由于STL格式具有易于转换、表示范围广、分层算法简单等特点,为大多数商用快速成形系统所采用,现己成为快速成形行业的工业标准。但是,STL模型也存在许多不足之处:2.4.1精度不足。由于STL模型用大量小三角形面片来近似逼近CAD模型表面,造成STL模型对产品几何模型的描述存在精度损失,并且在对多张曲面进行三角化时,在曲面的相交处往往产生裂缝、孔洞、覆盖及相邻面片错位等缺陷。2.4.2数据冗余度大。STL模型不包含拓扑信息,三角形面片的公用点、边单独存储,数据的冗余度大。随着网络时代的到来,STL模型数据冗余大的不足也使其不利于远程RF的数据传输,难以有效支持远程制造。

3快速成型技术的应用3.1在外观及人机评价中的应用新产品开发的设计阶段,虽然可借助设计图纸和计算机模拟,但并不能展现原型,往往难以做出正确和迅速的评价,设计师可以通过制作样机模型达到检验的目的。传统的模型制作中主要采用的是手工制作的方法,制作工序复杂,手工制作的样机模型不仅工期长,而且很难达到外观和结构设计要求的精确尺寸,因而其检查外观及人机设计合理性的功能大打折扣。快速成型设备制作的高精度、高品质样机与传统的手工模型相比较可以更直观地以实物的形式把设计师的创意反映出来,方便产品的外观造型和人机特性评价。现在的快速成型加工得到的成型件都是单一颜色,颜色主要由材料决定,为了对产品色彩外观进行评价,有时需要手工涂色,随着彩色成型技术的发展,这方面的问题可以解决。人机评价主要包括成型件尺寸及操作宜人性,快速成型可以很好地满足这方面的要求。3.2在产品结构评价中的应用通过快速成型制成的样机和实际产品一样是可装配的,所以它能直观地反映出结构设计合理与否,安装的难易程度,使结构工程师可以及早发现和解决问题。由于模具制造的费用一般很高,比较大的模具往往价值数十万乃至几百万,如果在模具开出后发现结构不合理或其他问题,其损失可想而知。而应用快速成型技术的样机制作可以把问题解决在开出模具之前,大大提高了产品开发的效率。3.3与反求工程结合反求工程(Reverse Engineering,RE)也称逆向工程,就是用一定的测量手段对实物或模型进行测量,然后根据测量数据通过三维几何建模方法重建实物的CAD数字模型,从而实现产品设计与制造过程。对于大多数产品来说,可以在通用的三维CAD软件上设计出它们的三维模型,但是由于对某些因素,如对功能、工艺、外观等的考虑,一些零件的形状十分复杂,很难在CAD软件上设计出它们的实体模型,在这种情况下,可以通过对模型测量和数据处理,获得三维实体模型。作为一种新产品开发以及消化、吸收先进技术的重要手段,反求工程和快速成型技术可以胜任消化外来技术成果的要求。对于已存在的实体模型,可以先通过反求工程,获取模型的三维实体,经过对三维模型处理后,使用快速成型技术,实现产品的快速复制,缩短了产品开发周期,大大提高产品的开发效率。

结束语快速成型技术可以大大缩短产品的开发周期,满足产品的个性化、多样化需求,在工业设计中得到广泛应用。但由于该技术的制作精度、强度和耐久性还不能满足工程实际的需要,加之设备的运行及制作成本高,一定程度上制约着RP技术的普遍推广。随着研究的不断深入,制约快速成型发展的因素会逐步解决,应用领域会不断得到拓展。

参考文献

[1]孙秀英.面向RP的VRML模型浏览与分层研究[D].西安科技大学,2006.

[2]丘宏扬,谢嘉生,刘斌.快速成型技术研究中的若干关键问题[J].锻造机械,2001.

[3]徐江华,张敏.快速成型技术在工业设计中的应用[J].包装工程,2004

特种加工技术论文(2)

  特种加工技术论文篇二
  特种加工技术的研究与应用

  摘要:本文论述了特种加工技术的产生和发展,并就快速成型加工、超声加工、电子束和离子束加工以及激光加工进行展开阐述,讨论了各个加工方法的工艺原理和在生产实践中的具体应用。最后,对特种加工技术的发展方向进行了展望。

  关键词:特种加工;快速成型技术;超声加工;电子束和离子束加工;激光加工

  1.特种加工技术的产生和发展

  机械加工作为一种有着悠久历史的加工方法,对人类的物质文明和生产活动起到了极大的推动作用。对于工业部门而言,设计出来的零件或者机器必须依赖于加工方法来实现,如果没有行之有效的加工方法,再好的设计思路也无法转化为产品。例如18世纪70年代就有人发明了蒸汽机,但是由于当时的生产设备制造不出有着较高精度和配合要求的蒸汽机气缸,所以一直无法生产出可以正常工作的蒸汽机[1]。直到气缸镗床的出现,才解决了这一生产上的难题,使得蒸汽机获得了广泛的应用,引起了第一次工业革命。因此,我们可以发现,加工方法对于设计思想的实现和社会经济的发展起着多么重大的作用。

  随着生产的发展和科学实验的需要,对于产品的要求越来越高,未来的技术产品向着高精度、高速度、重载、高温高压、小型化和高可靠性等方向发展,为了实现这些新的要求,就需要使用新材料和新结构,因此,对机械制造部门也提出了很多新的要求。特种加工正是在这种强烈的社会需求下产生和发展起来的,而它所具有的优于传统机械加工的特点又进一步促使人们对它进行研究和应用,因此,到目前为止,特种加工技术已经有了很多种类,所能达到的加工精度和生产效率也越来越高。可以说,特种加工技术已经成为现代机械制造行业必不可少的一种加工方法。

  传统的机械加工利用机械能和切削力对金属进行加工,而特种加工主要利用电能、化学能、光能、声能和热能等能量来去除金属,因此特种加工技术可以用来加工各种高硬度、高强度、高脆性和高韧性的金属或者非金属材料。由于特种加工采用广义上的刀具,例如激光、超声波、电子束和离子束等,所以易于实现加工过程的全自动化,这对于现代化生产的组织和管理有着很重要的意义。

  从1943年前苏联鲍﹒洛﹒拉扎林柯夫妇开始研究火花放电腐蚀开关触点的现象开始,特种加工技术已经经历了六十多年的发展。目前,很多特种加工方法都已经发展成熟,例如电火花加工、电火花线切割加工、电化学加工和激光加工等。现在,人们也研究了将特种加工的理论应用于传统的机械加工方法中去的复合加工方法,如振动切削和振动铣削。由于特种加工技术尤其适用于对难加工材料、复杂型面和精密微细表面的加工,所以特种加工有很大的适用性和发展潜力,在刀具、模具、量具、仪器仪表、航天器和微电子元器件等制造中得到越来越广泛的应用。在未来,特种加工将向着提高加工精度和表面质量、提高生产效率和自动化程度、发展复合加工和超精密加工等方向发展。

  2.快速成型技术

  快速成型技术(RP)是一种增材加工方法,主要用来制造样件,从而可以对新产品的设计进行快速评估、修改和功能实验,能够较大地缩短产品的研制周期。快速成型技术集机械工程、CAD、数控技术、激光技术和材料科学技术于一体,易于实现生产过程的自动化,且高效便捷,因此这种样件制造工艺日益在生产实践中获得应用。按照快速成型技术使用的材料和工艺原理,可以分为四种类型:光敏树脂液相固化成型法(SL)、选择性激光粉末烧结成型(SLS)、薄片分层叠加成型(LOM)、熔丝堆积成型(FDM)。

  3.超声加工技术

  频率超过16000Hz的声波称为超声波,它是一种纵波,能够传递很强的能量,且当它经过液体介质传播时,会产生液压冲击现象。超声加工技术(USM)利用工具端面作超声频振动,通过磨料悬浮液使得磨粒在超声振动的作用下产生机械撞击、抛磨作用以及超声空化作用来加工脆硬材料。由于超声加工技术的工艺原理和特点,超声加工有很多特殊的应用。例如加工深小孔、拉丝模及型腔模具研磨抛光、对难加工材料的加工、超声振动切削、超声电解复合加工、超声电火花复合加工、超声清洗、超声切割等。超声加工技术与新材料的发展是相辅相成的,在未来,超声加工一定会有更多的应用和发展。

  4.电子束和离子束加工

  电子束加工(EBM)利用能量密度极高的电子束,以极高的速度冲击工件表面,使动能大部分转化为热能,使得被冲击的工件材料局部熔化和气化,从而达到改变被加工工件材料表面物理化学性质和形状尺寸位置的目的。电子束加工装置包括电子枪、真空系统、控制系统和电源,电子束是由钨或钽制成的发射阴极在加热状态下得到的。由于电子束加工的工艺原理和特点,EBM技术可以用来加工型孔和特殊表面、刻蚀、焊接、热处理以及电子束光刻等。

  离子束加工(IBM)利用具有较高能量的离子束射到材料表面时所发生的撞击效应、溅射效应和注入效应来进行不同的加工。由于离子束轰击材料是逐层去除原子,所以可以达到纳米级的加工精度。离子束加工按其工艺原理和目的的不同可以分为三种:用于从工件上去除材料的刻蚀加工、用于给工件表面涂覆的镀层加工以及用于表面改性的离子注入加工。由于电子束和离子束易于实现精确的控制,所以可以实现加工过程的全自动化,但是电子束和离子束的聚焦、偏转等方面还有许多技术问题尚待解决。

  5.激光加工

  激光技术起始于20世纪60年代,可用于打孔、切割、焊接、热处理以及激光存储等方面。激光的产生源自物质的受激辐射,即某些具有亚稳态能级结构的物质,在一定外来光子能量的激发下,产生所谓的粒子束反转现象,在粒子束反转的状态下,如果有一束能量等于基态与亚稳态能量之差的光子照射该物质,就会产生受激辐射,输出大量的光能。由于激光具有强度高、单色性好、相干性好和方向性好等特点,因此几乎可以用来加工任何材料。目前常用的激光器有固体激光器(红宝石激光器、铷玻璃激光器和掺铷钇铝石榴石激光器)和气体激光器(二氧化碳激光器和氩离子激光器),在生产实践中,对影响激光加工的各个因素还需要进行更加深入的研究,以便更加充分地利用激光加工技术。

  6.结束语

  近年来,随着新材料、新结构、复杂型面零件、特殊要求零件的需求越来越大,特种加工技术得到了越来越广泛的应用,在未来,随着机电控制技术的进一步提高,特种加工技术将会更加趋于自动化,充分利用计算机技术,可以使得特种加工向着自动化和柔性化方向发展[2]。而在未来,特种加工技术将越来越多的应用于精密微细加工、复合加工和绿色加工。

  参考文献

  [1]刘晋春,白基成,郭永丰.特种加工[M],北京:机械工业出版社,2011:1~6.

  [2]王杰,樊军,等.特种加工技术的新进展[J],轻工机械,2008,26(4):5~7.

  
看了“特种加工技术论文”的人还看:

1. 超精密加工技术论文

2. 超声波加工技术论文

3. 精密与超精密加工技术论文

4. 机械先进制造技术论文

5. 超精密制造技术论文

上一篇:中国水运算什么期刊

下一篇:力学学报期刊投稿