欢迎来到学术参考网
当前位置:发表论文>论文发表

凝固点降低法测定摩尔质量论文

发布时间:2023-12-07 02:12

凝固点降低法测定摩尔质量论文

1.利用依数性,可以进行许多热力学测量。如本实验用凝固点降低法测定非挥发性溶质的摩尔质量。实际上,用沸点升高法也能测定溶质的摩尔质量。但由于同一溶剂的沸点升高常量比凝固点降低常量小很多,而且沸点又受外压影响较大,因此,凝固点降低法比沸点升高法获得的结果有更小的误差。
2.公式(3-18)的使用条件是溶质在溶剂中不发生解离或缔合。当溶质在溶剂有解离、缔合、溶剂化、或配合物生成等情况存在,都会影响溶质在溶剂中的表观摩尔质量。此时,利用凝固点降低数值,可研究溶液中溶质的解离度、或缔合度等。如,己知溶质B2的理论摩尔质量为M,溶在溶剂A中,通过实验测定获得B的表观摩尔质量为M,而且M=一。依此数据,可认定B2在溶剂A中完全解离为B。对于弱电解质还可以测
得其电离度。再如,若实验者怀疑某溶质B (摩尔质量为M在溶剂A中可能会发生缔合,就可用凝固点降低法测其摩尔质量,若测得其摩尔质量为Mexp且有Mexp= 3M。据此实验者认为溶质B在溶剂A中会发生3分子缔合,即缔合为B3。
3.理论上,在恒压下对单组分系统只要两相平衡共存就可以达到凝固点:但实际上只有固液两相充分接触时,平衡才能达到。例如将样品管置于冰浴中后,温度不断降低,到凝固点时,由于固相是逐渐析出的,使凝固放热速度小于冷却速度,温度仍可能继续下降,使凝固点的确定比较困难。若采用过冷法,液体过冷后突然搅拌,则会瞬间形成大量的微小晶核,保证了固液两相的充分接触:同时液体的温度因为凝固放热而回升,达到凝固点并保持温度不变。

凝固点降低法测摩尔质量

凝固点降低法测定溶质的摩尔质量是利用稀溶液的依数性进行测量的。公式做了简化,因此只有在稀溶液条件下方可使用,溶液浓度高了偏离依数性公式,浓度太低了,依数性变化不明显。所以利用依数性只能粗略的计算相关指标,然而用依数性对体系进行定性判断是具有很好的指导意义的。
凝固点(析出固态纯溶剂时)降低
稀溶液当冷却到凝固点时析出的可能是纯溶剂,也可能是溶剂和溶质一起析出。当只析出纯溶剂时,即与固态纯溶剂成平衡的稀溶液的凝固点Tf比相同压力下纯溶剂的凝固点Tf低。

凝固点降低法测摩尔质量?拜托各位了 3Q

凝固点降低法测摩尔质量 一、目的要求 1. 用凝固点降低法测定萘的摩尔质量。 2. 通过实验掌握凝固点降低法测定摩尔质量的原理, 加深对稀溶液依数性质的理解。 二、原理 稀溶液具有依数性,凝固点降低是依数性的一种表现。 稀溶液的凝固点降低与溶液成分关系的公式为: 式中,△Tf为凝固点降低值;Tf*为纯溶剂A的凝固点;△ fHm(A)为纯溶剂A的摩尔凝固热; XB为溶液中溶质的摩尔分数;MA是溶剂A的摩尔质量; bB是溶质的质量摩尔浓度, 是指每1千克溶剂中所含溶质的摩尔数,单位为mol·kg-1; Kf称质量摩尔凝固点降低常数,其数值只与溶剂的性质有关, 单位为K·kg·mol-1,下表给出部分溶剂的常数值: 溶剂 水 醋酸 苯 环己烷 环己醇 纯溶剂凝固点Tf* /K 273.15 289.75 278.65 279.65 297.05 凝固点降低常数Kf /K·Kg·mol-1 1.86 3.90 5.12 20.2 39.3 若已知某种溶剂的凝固点降低常数Kf ,并测得该溶液的凝固点降低值 ,以及溶剂和溶质的质量WA,WB, 就可以由上式推得如下的计算溶质B的摩尔质量的式子: MB=KfWB/△TfWA (2) 纯溶剂的凝固点是其液-固共存的平衡温度。将纯溶剂逐步冷却时, 在未凝固之前温度将随时间均匀下降, 开始凝固后由于放出凝固热而补偿了热损失,体系将保持液- 固两相共存的平衡温度不变,直到全部凝固,再继续均匀下降( 见图4-1a)。但在实际过程中经常发生过冷现象,其冷却曲线( 如图4-1b)所示。对溶液来说除温度外,尚有溶液的浓度问题。 与凝固点相应的溶液浓度,应该是平衡浓度,当有溶剂凝固析出时, 剩下溶液的浓度逐渐增大,因而溶液的凝固点也逐渐下降(见图4- 1c),考虑到溶剂较多,通过控制过冷程度,使析出的晶体很少, 就可以以过冷回升的温度作凝固点,用起始浓度代替平衡浓度, 一般不会产生大的误差。(见图4-1d)。如果过冷太甚, 凝固的溶剂过多,溶液的浓度变化过大,则出现图4-1e的情况, 这样就会使凝固点的测定结果偏低,但可采用外推法进行校正, 如图4-1(f)。 图4-1 冷却曲线图 图4-2 凝固点降低实验装置图 三、仪器和试剂 凝固点测定装置和数显贝克曼温度计各一套(见图1-1); 纯萘丸;环己烷(分析纯);硫酸纸两片,25ml移液管一支, 碎冰或颗粒冰。 四、实验步骤 1.按图4-2将凝固点测定装置安装、摆放好, 并插好数显贝克曼温度计的感温探头, 注意插入的深度要留有一点余地,以免将玻璃管捅破。 2.调节冰浴的温度为3.5℃左右。一般来讲,冬天宜水多于冰, 夏天宜冰、水各半,至于具体多少,要视当时的室内气温进行调节。 3.测定纯溶剂的凝固点。抽出数显贝克曼温度计的感温探头( 留心记下插入的深度记号), 用移液管取25ml环己烷加入口径小些的内凝固管中( 在它的外围已套有一个空气套管), 将装有内管的外管直接浸入冰浴中,插回贝克曼温度计的感温探头。 开启搅拌按钮、开启贝克曼温度计的电源和读数按钮,降温、 控制冷却速度,选择恰当的时刻开始计时读数(如有条件, 可两组使用一台电脑和显示器, 用该实验配套的软件进行机器自动读数和生成图形), 不要停止搅拌。若温度不再下降,反而略有回升, 说明此时晶体已开始析出,直到温度升至最高恒定一会儿时间, 记下最低时的温度和恒定温度。 用手温热凝固管,使环己烷晶体全部熔化,重新置凝固管于冰浴中, 如上法操作重复进行三次。如果在测量过程中过冷现象比较严重, 可加入少量环己烷的晶种,促使其晶体析出,温度回升( 也可采用留晶种的方法,即在晶体熔化时, 留一点晶体在管壁上不让其全部熔化, 待体系冷至粗测的最低温度时,再将其拨下)。 4.用分析天平和指定的硫酸纸准确称量萘丸片(约0.2g), 投入凝固管内,用玻璃棒捣碎、搅拌,使其溶解,注意: 不要将萘随便洒落、遗弃在台面和地上(升华熏人!)。 同上法测该溶液的凝固点,重复测定三次。 五、实验注意事项 注意控制过冷过程和搅拌速度; 注意冰水混合物不要积累得太多而从上面溢出; 高温、高湿季节不宜做此实验,因为水蒸气易进入体系中, 造成测量结果偏低;不要使环己烷在管壁结成块状晶体。 较简便的方法是将外套管从冰浴中交替地(速度较快)取出和浸入。 六、数据处理 1.用ρt/(-3)=0.7971-0.8879× 10-3t/℃计算室温t时环己烷的密度, 然后算出所取的环己烷的质量WA。 2.由测定的纯溶剂、溶液凝固点Tf*、Tf ,计算萘的摩尔质量。 【实验测定扩展】 Kf值和MB值的测定:配置一系列不同bB的稀溶液, 测定一系列△Tf 值,代入(1)或(2)式,计算出一系列Kf,然后作Kf- bB图。外推至bB=0的那个纵坐标就是准确的Kf值。反过来, 若已知Kf,则测定了△Tf就可求出溶质的摩尔质量。 也可由四个以上的实测值△Tf算出MB, 然后再作MB对bB的图,外推至 bB= 0的那个纵坐标就为 的准确值。还可配制一系列不同浓度CB的稀溶液(CB 的单位为 kg·m-3), 测定该稀溶液的透渗压∏(适当测定高分子化合物的平均摩尔质量) ,用∏/CB对CB作图得一直线,将直线外推到CB= 0的那个纵坐标就是 。 沸点升高常数Kb的测定类同Kf的测定。

凝固点降低法测定摩尔质量

凝固点降低法测定摩尔质量的实验结果为什么比理论值低才合理

凝固点降低法测得的凝固点对于“溶液”来说是“溶剂”(溶质不能析出)析出的温度点,这样就可以发现,溶液的浓度随着溶剂的析出是不断升高的。浓度增大,就会使测得的结果偏低。另外测量原理是基于稀溶液的基础上的。

凝固点是晶体物质凝固时的温度,不同晶体具有不同的凝固点。在一定压强下,任何晶体的凝固点,与其熔点相同。同一种晶体,凝固点与压强有关。凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。

在凝固过程中,液体转变为固体,同时放出热量。所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。非晶体物质则无凝固点。

扩展资料:

如果压强变化,熔点也要发生变化。熔点随压强的变化有两种不同的情况。对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高。

对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小 (金属铋、锑等也是如此) ,当压强增大时冰的熔点要降低。

如果液体中溶有少量其他物质,或称为杂质,即使数量很少,物质的熔点(凝固点,下同)也会有很大的变化。

例如水中溶有盐,熔点(固液两相共存并平衡的温度)就会明显下降,海水就是溶有盐的水,海水冬天结冰的温度比河水低,就是这个原因。饱和食盐水的熔点可下降到约-22℃。

参考资料来源:百度百科--凝固点

上一篇:浅谈小学数学课堂教学的方法论文

下一篇:双减政策下小学数学课堂教学论文