欢迎来到学术参考网
当前位置:发表论文>论文发表

仿生材料相关论文最新

发布时间:2023-12-06 09:09

仿生材料相关论文最新

2008年8月Angewandte Chemie杂志报道了澳大利亚莫纳什大学的利昂·斯皮西亚、罗宾·布里姆布来可比和安妮特·可罗,澳大利亚联邦科学与工业研究组织(CSIRO)的格哈德·斯伟格斯和美国普林斯顿大学的查尔斯·迪斯莫克斯共同开发了由一层涂层和维持植物光合作用的基本化学物质——锰组成的系统。该系统可模拟植物的光合作用,为利用阳光将水分解成氢和氧开辟了一条新途径。此项技术突破有望革新制氢工艺,从而利用太阳光大规模生产清洁的绿色能源——氢气。

光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是赖以生存的关键,而在面临能源和环境瓶颈的今天,这一过程中的能量转换也为人类提供了极其重要的启示。由于自然光谱的吸收率等原因,光合作用在多数植物中效率非常低,通常均低于0.5%。在人工设计的系统中,研发人员借鉴其光反应与电子传递的机制,并提高通量转化的效率,使其适于太阳能的转化利用。

事实上,在上述模拟光合作用的研究取得突破前,微生物制氢的已经成为了研究热点。自然界已发现有类似甲烷菌的制氢菌,但其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气也会像制造沼气一样得到大规模应用。

模拟光合作用制氢或者微生物制氢过程正是仿生学“向自然学习”的思想典型。20世纪40年代以来,工程技术领域中出现了调节理论,人们开始在一般意义上把生物与机器进行类比,认识到二者包含自动调节系统。此后,科学研究和生产实践完全证实了生物和机器在许多问题上的共同之处。而控制论则把生物科学和工程技术从理论上联系起来,成为在原理上沟通生物系统与技术系统的桥梁,奠定了生物与机器在控制与通信方面进行类比的科学理论基础。之后,斯蒂尔提出了仿生学的研究理念。自上个世纪末以来,人们认识到大约35亿年的生命演化与协同进化过程优化了生物体宏观与微观结构,形态与功能具有无可比拟的优越性,仿生学也因此显示出巨大的生命力。

从研究模式上看,仿生学作为模仿生物建造技术装置的科学,是一门新兴的边缘科学,研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和设备,创造新技术。模拟光合作用制氢过程的例子很好地诠释了这一点。在植物的光合作用中,锰参与几种酶系统。由于锰可以在正二价和正四价两种化合价之间转换,所以主要在氧化还原和电子转移中发挥作用。这一思想为斯皮西亚等人的研究提供了启发。他们在确定锰簇是植物利用水、二氧化碳和阳光制造碳水化合物和氧气的中心枢纽后,开发出这种人造锰簇,并利用这些分子的能力将水分解成氢和氧。研究者将一层质子导体――Nafion薄膜覆盖在一个电极上,形成一层仅几微米厚的聚合体膜,这层聚合体膜充当锰簇的载体。锰在正常情况下不溶解于水,但可以和Nafion薄膜小孔中的催化剂结合,形成不易分解的稳定结构,当水到达此催化剂时,在阳光的照射下便发生氧化反应。

在能源和环境领域,这一技术显示了仿生技术的巨大应用潜力和价值。初步测试表明,此催化剂连续使用3天之后还有活性,由此分解出来的氢气和氧气可以在燃料电池中结合成水,产生电力供住宅和电动车全天24小时使用,且不排放碳而是排放水。虽然此系统的效率还有待提高,但研究者可以不断地从自然界中学习,使之更为高效,从而使氢这一能效高且没有碳排放的绿色清洁能源为未来社会所用。

生物体的电子传递过程在能源仿生技术上的另一重点研究领域是生物发光。生物发光和光合作用都是“电子传递”现象,而从某个角度上看,生物发光可以看作是光合作用的逆反应。光合作用是绿色植物吸取环境中的二氧化碳和水分,在叶绿体中,利用太阳光能合成碳水化合物,同时放出氧气。光能从水分子上释放电子,并把电子加到二氧化碳上,产生碳水化合物,这是一个还原过程。光合作用把光能转变成化学能,而生物发光是电子从荧光素分子上脱下来和氧化合,形成水,产生光。生物发光是将化学能转变成光能。生物光作为冷光源,具有效能高、效率大、不发热、不产生其它辐射、不会燃烧、不产生磁场等特点,对于手术室、实验室、易燃物品库房、矿井以及水下作业等,都是一种安全可靠的理想照明光源。通过模仿发光生物把一种形式的能量转换成另一种形式的能量,制造冷光板使其不需要复杂的电路和电力,就能白天吸收太阳光,晚上再将光能释放。人们先是从发光生物中分离出纯荧光素,后来又分离出荧光酶。现在已能人工合成荧光素,这就使人类模仿生物发光,创造一种新的高效光源——冷光源成为可能。然而,人们对于萤火虫等发光机制的研究仍然有待深入。如果将光合作用和生物发光机制在仿生学框架下同时加以研究,就有可能在能量利用的电子传递现象中取得进展,从而实现能源利用更为巨大的进步。

从仿生学的诞生、发展,到现在短短几十年的时间内,研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力,在能源技术上的应用潜力也极其巨大,有助于破解人们所面临的能源瓶颈问题,同时解决石化能源等所带来的环境问题。

急!!!生物仿生材料的论文、生态工程相关的论文

通过上课我再次对那些纳米技术有了一些心得了解,另外我通过网络和书籍的查阅更加清楚地了解到纳米此材料(NanoST)的定义:纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。纳米科技是研究由尺寸在0.1至100纳米之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。可衍生出纳米电子学、机械学、生物学、材料学加工学等。 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。通过上课我也了解了纳米材料的许多特性比如: 纳米尺度的生物大分子能导电、纳米微粒的抗菌作用等只有在纳米级时才可显现出来。

同时我也了解到纳米材料的独特特性, 在于它的小尺寸效应与界面效应以及纳米结构单元之间的交互作用。当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。

当然任何的材料都在于它的应用。纳米陶瓷材料用于人工骨关节、牙齿修复、耳骨修复等,其强度、韧性、硬度以及超塑性都有显著提高。新型纳米抗炎敷料,表面结构发生根本性变化,面积显著增大,杀菌效果增加百倍以上。利用纳米技术的DNA复制与自我生长、自我制造机理,可研制出有生物相容性的各种人体器官和骨骼修复剂与自生长材料、人血代用品等。 可利用纳米薄层能分解有机物、抑制细菌滋生的自我清洁特性可制成各种无菌器械用于临床。在医疗保健领域,用掺入多种微量矿物质元素的微元化纤维及陶瓷纤维等纳米材料,可制成衣物、垫料等,有助于关节炎等病症的治疗、屏蔽电磁波能量,保障人体不受侵害。加入了纳米材料的食品可杀菌并提高胃肠吸收能力。纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮”DNA的结构,有点像黑暗中挂满了灯笼的宝塔,借助与发光的“灯笼”,我们不仅可以识别灯塔的外型,还可识别灯塔的结构。简而言之,这些纳米晶粒,在DNA分子上贴上了标签。 目前,我们应当避免纳米的庸俗化。尽管有科学工作者一直在研究纳米材料的应用问题,但很多技术仍难以直接造福于人类。2001年以来,国内也有一些纳米企业和纳米产品,如“纳米冰箱”,“纳米洗衣机”。这些产品中用到了一些“纳米粉体”,但冰箱和洗衣机的核心作用任何传统产品相同,“纳米粉体”赋于了它们一些新的功能,但并不是这类产品的核心技术。因此,这类产品并不能称为真正的“纳米产品”,是商家的销售手段和新卖点。现阶段纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段,应该指出这不过是纳米材料应用的初级阶段,可以说这并不是纳米材料的核心,更不能将“纳米粉体的应用”等同与纳米材料。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

我相信纳米材料在未来的一段时间里必将成为人类材料史上对人类影响最大的一种新型材料,同时纳米材料也必将给人类的为来带来诸多便利,为人类的未来做出其巨大的贡献。

仿生材料学的仿生材料学的研究内容

我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成,例如能够跳动80 年都不停止的人类心脏;几乎不发热量的冷血昆虫。从材料化学的观点来看,仅仅利用极少的几种高分子材料所制造的从细胞到纤维直至各种器官能够发挥如此多种多样的功能,简直不可思议。动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同。举几个简单的例子:海鳗的发电器瞬间可以发出800 伏的电压,足以电死一头大象,但是它的发电器不是金属等导电器材,而是蛋白质的分子集合体;深海里有一种软体动物,其身体无疑也是由细胞材料所构成,但是却可承受很高的海水压力而自由地生存着。这些例子说明,许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就形成了仿生材料学。因此,仿生材料学的研究内容就是以阐明生物体的材料构造与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。但是迄今为止该学科未开拓的领域和未解决的问题非常之多,可以认为仿生材料学的学科体系还没有完全形成。进行仿生材料的开发与研究必须要学习和了解许多相关的专门知识,例如,高分子化学、蛋白质工程科学、遗传学、生物学以及与其关联的技术等等。

仿生纳米材料

自然界合成了大量结构复杂、性能优越的有机、无机或有机无机杂化材料。这些材料与常规材料相比有着特殊的物理性质,从而造就了生物体各种奇异的功能。随着纳米技术的发展,研究发现许多生物体的特殊能力都与纳米技术息息相关。自然是一个先进的合成工厂,不断制造出具有各种奇异功能的生物体。而这些功能的实现,往往要依靠基本物质单元在微尺度上的有序或无序组装。对这些材料的探索和研究,为人们在微尺度上的仿生开辟了新的道路。仿生纳米材料的目标就是研制出一种材料,使它成为具有类似于生物体所具有的各种功能的“活”材料。仿生纳米材料的设计、制造、加工和性能、结构特征均涉及到材料学的最前沿领域,最先进的发展方向。

上一篇:论文参考文献有人查吗

下一篇:大一论文后记范文参考