dianpingyao
传统时间序列聚类的缺点: 1)时间序列聚类的研究一般采用等长划分,会丢失重要特征点,对聚类结果有负面影响。 2)采用时间序列测量值不能准确度量相似度。 如下埃博拉出血热、卫生部在数值上很相似,但教育部和卫生部在形状更相似。若是以形状作为度量传统的欧氏距离可能就不太合适了。 不等长时间序列滑窗STS聚类算法: 1)通过标准分数z_score预处理,消除时间序列观测值数量级差异的影响。 2)更改了相似度计算的方式,采用基于滑窗的方法计算不等长序列的距离。 3)采用类k-means的聚类算法的中心曲线计算方法。 时间序列数据因其趋势信息的直观展现形式,广泛应用于社交网络、互联网搜索和新闻媒体数据分析中。例如:Google应用搜索流感的相关信息的时间序列预测流感爆发趋势。根据某话题热度时间序列数据趋势的规律性,通过聚类区分不同类型的时间序列数据。同一类簇的Twitter话题具有相同或相似的发展趋势,进而应用于话题的发展趋势的预测。 时间序列聚类算法可以分为两类。 1)基于原始数据的时间序列聚类算法。 2)基于特征的时间序列聚类算法。 基于特征的时间序列聚类算法指根据原始数据从时间序列中提取形态特征(极值点位置、分段斜率)、结构特征(平均值、方差等统计值特征)、模型特征(模型的预测值),从而根据这些特征值进行聚类。这类方法的优点解决了不等长时间序列聚类问题,缺点是减弱了原始数据值得影响,聚类的形状趋势信息往往比较粗糙。 3. HOW 一、距离度量公式 STS距离计算的是累加时间序列间每个时间间隔斜率差的平方,公式 如上图所示,g1、g2和g2、g3的欧式距离的数值更相近。g1、g2的STS距离大于g2、g3的数值。在形状距离上,STS距离计算方式表现更好,一定程度上可以解决欧式距离度量时间序列局部特征信息确实和受观测数值数量级差异影响大的问题,但是依旧无法度量不等长时间序列的距离。 基于滑窗的STS距离公式。 如上图所示,当计算不同长度的时间序列的s和r的距离时,先不断平移时间序列s,然后找到s和r距离最近的字段,就如同上图虚线之间的位置,此时s和r距离最近,这个最近距离作为s和r之间的距离。 二、预处理过程 z-score标准分数用数据观测值和观测值平均值的距离代替原观测值。z-score处理后的数据平均值为0,标准差为1。标准差的作用是统一量纲,去除数值的数量级差异影响。 总结 本论文提出了形状距离的不等长时间序列的聚类方法。我们可以学到的有 1)z-score统一量纲,消除数值数量级差异,聚类效果更好。 2)计算x和y时间序列的STS距离,可以平移其中一个时间序列,求最小值作为STS距离值,这就消除了同一时间序列不同起始点的影响。
骑着猪猪追月亮
聚类分析在企业网络营销中的应用论文
论文摘要:本文针对企业网络营销中的大量数据为基础进行数据的分析,依据数据挖掘技术中典型的聚类分析方法进行数据的处理,并以一个网络营销公司为例,对其客户信息进行了聚类分析,得到了一些有价值的信息,对于企业的营销策略的决策给与一定的支持。
论文关键词:聚类分系,网络营销,策略,客户关系
0前言
现代科学技术的迅猛发展,特别是在互联网的应用和开发上更加的迅速,企业必须通过网络对自己的产品加强宣传以增强自己的竞争力。客户是一个非常重要的、有价值的重要资源,现在如何更好地从数据库中挖掘出客户中有价值的信息,更好的培植和经营与有价值客户的关系,抛弃那些无利可图没有发展前景而且营销费用高的客户,并且可以针对不同价值的客户给与不同的政策同时制定出个性化的营销策略,这些才能够保证企业的生存发展。对于这一切数据挖掘无疑是行之有效的好方法之一。本文以一个网络营销公司为例,提出了一套可操作性的对客户价值评价方法,然后使用数据挖掘技术中比较常见和常用的聚类分析算法对客户信息进行聚类从而达到非常重要的信息并为企业在网络营销中提供决策依据。
1聚类分析
聚类(clustering)是对于数据挖掘技术是非常重要的一部分,现在也是数据挖掘技术中关键的一种。聚类的意义就是针对物理或逻辑上的数据对象的进行自动分类,最后将数据对象分为多个类或簇的过程。对于聚类结果要使得数据对象在同一个分类中具有最大的相似度,而在不同的类中具有最小相似度。聚类的现实意义就是在于可以将数据按照一定得关系进行自动的分类,事先不知道所有的数据对象共有多少类,通过算法的处理最后得到一个分类结果进行应用。譬如在市场研究领域中,特别是针对网络营销的企业或网站,从大量的网络数据进行分析聚类,可以讲客户分成不同的类别,针对这些类别不同的购买力和兴趣爱好来进行个性化的营销手段,提高企业的经济效益。目前研究人员大多针对于聚类分析算法的改进和完善进行研究,进而提高聚类分析的工作效率。著名的算法有:CLARANS,BRICH,DBSCAN,CURE,STING,CLIGUE和WaveCluster等。
2聚类分析应用于企业客户资源管理
现针对某电子商务公司进行分析,该电子商务公司的客户分布在全国各地以及国外一些地区,现仅列出具有代表性的10个大客户:吉林,黑龙江,山东,江苏,浙江,安徽,湖南,缅甸,印度,南非等。在数据挖掘的目的就是从客户中找到一些共同点,在对这些客户数据进行处理前要使用聚类分析的方法进行研究看看这10个客户能否有一些共同之处以便企业针对不同类型的客户给与不同的对策,首先对该公司采用专家打分的方法,而且还有通过网上问卷调查和访谈的方式,收集各地销售专员的意见等方式,然后对数据加以综合,最后聚类分析法确定各项指标的权重。
那么在具体实施聚类分析法的时候可分为5个步骤进行:
第1步:首先对各项指数构建层次结构,其中被评定的10个大客户作为方案层,客户价值放在目标层中进行处理,各项指标是准则层,按照这样的分层结构来构造客户关系评价系统中个指数的结构图,见图2-1所示;
从数据可以看出有两种情形:一是缅甸和南非,从数据中可看出这类客户的当前价值很小,但是具有很大的隐含价值,势必会有一天他们的成长给企业会带来丰厚的物质利益,这样具有发展潜能的客户应该采取措施激发潜能;二是安徽和印度这类客户,虽然从数据中看出这类客户当前价值很小,但是就这两个省份的地理位置和经济状况来分析他们隐含着较大的价值。对于这一类的客户,企业就应该采取灵活的措施,激发他们的购买能力促使该类型的客户不断地向前发展;
第2类是“维持型”客户,他们会源源不断的为企业提供利润,如黑龙江和江苏,他们这类客户根据以往的交易记录分析到得结果就是目前价值大,不过没什么发展的潜能,或者说在某种情况下它的时常还会萎缩,当前这类客户会给企业带肋比较丰厚的利润但是就长期发展而言却不是利润的主要来源,他们在某种情况下会流失掉,会被其他的企业竞争对手的介入而流失,为此对于企业一方面要维持与这类客户的良好关系,保持稳定的`客户关系,另一方面还要采取一些营销手段来刺激该类客户的消费,提供一些个性化的服务和策略;
第3类“淘汰型”客户,这类用户就如同鸡肋了,对于企业的现在和将来都意义不大,目前的销售份额较小,企业对他们营销的成本还很高,年利润率很低,根据分析这类客户包括浙江、湖南和吉林,他们没有长期的发展的趋势,所以企业采取的策略就是应充分挖掘他们给企业带来的当前价值后逐渐地放弃他们;
第4类是“贵宾型”客户,这类用户是企业的主要经济利润的来源,在某种程度上可以说是企业生存的保证,他对企业是关系到生死存亡的重要客户,从数据中看山东就是该企业的这类贵宾型的客户,他的当前价值和潜在价值都很大,企业必须认真对待,细心呵护与这类客户的关系,以及该客户企业的关键性人物的关系,加强与这类客户的沟通和关系的培养,同时还要提高警惕,防止竞争对手抢走这些贵宾型客户。针对贵宾型客户企业就应该对其进行一对一的营销策略,进行良好的客户需求沟通,尽最大可能满足他们的需求,适当给与一些特殊政策来加强和他们的关系。从不同角度来加强客户对企业的忠诚度、满意度等。企业根据这些重要的信息就可以针对不同的客户采取合适的销售策略。
3小结
总之,企业首先对客户的价值进行全方位、多角度进行评价,再将分析结果量化后进行数据挖掘,通过聚类分析,对客户进行细分,针对不同类型的客户给与个性化的服务。
简而言之,文献综述就是对某类资料或某一研究领域已发表的论文进行整理和归纳。那怎样才能算是一个好的综述呢?为什么要读综述?很多同学在开始一个研究课题前,导师会建议
普通正常的聚苯乙烯是无毒的。 聚苯乙烯是指由苯乙烯单体经自由基加聚反应合成的聚合物。它是一种无色,无毒,无臭透明的热塑性塑料,具有高于100℃的玻璃转化温度,因
化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸
space[英][speɪs][美][ spes]n.空间,太空; 空白,间隔; 空隙; 片刻;vt.把…分隔开,留间隔于…之间;vi.以一定间隔排列;第三人称
2020年12月4日14时02分,新一代“人造太阳”装置——中国环流器二号M装置(HL-2M)在成都建成并实现首次放电,标志着中国自主掌握了大型先进托卡马克装置