安静的芋米
如果A^T=A,那么(C^TAC)^T=C^TAC,所以和一个对称阵合同的矩阵一定也是对称阵。
把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A'或AT。
矩阵转置的运算律(即性质):
1、(A')'=A
2、(A+B)'=A'+B'
3、(kA)'=kA'(k为实数)
4、(AB)'=B'A'
若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。
扩展资料
对称矩阵的基本性质:
1、每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
2、若对称矩阵A的每个元素均为实数,A是Symmetric矩阵。
3、一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。
4、如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。
5、n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。
小轩3636
对称矩阵的性质:1,对称矩阵是元素以对角线为对称轴对应相等的矩阵。2.形矩阵是A为对称矩阵的必要条件。3.对角矩阵都是对称矩阵。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。用<,>表示Rn上的内积。的实矩阵A是对称的,当且仅当对于所有,。任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。若对称矩阵A的每个元素均为实数,A是Hermite矩阵。一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。如果X是对称矩阵,那么AXAT也是对称矩阵.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。
么么1009
对称矩阵的性质是:
1、对于任何方形矩阵X,X+XT是对称矩阵。
2.、为方形矩阵是A为对称矩阵的必要条件。
3、对角矩阵都是对称矩阵。
4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
5、用<,>表示RN上的内积。n×n的实矩阵A是对称的。
6、任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和。
实对称矩阵的性质是:
1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
1、实对称矩阵A的不同特征值对应的特征向量是正交的。 2、实对称矩阵A的特征值都是实数,特征向量都是实向量。 3、n阶实对称矩阵A必可相似对角化,且相似对角阵上
LZ是文科生吧
求矩阵A的迹主要用两种方法:迹是所有对角元的和,就是矩阵A的对角线上所有元素的和。迹是所有特征值的和,通过求出矩阵A的所有特征值来求出它的迹。在线性代数中,一个
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
你好!解答如图,需要借助两个定理才容易证明。经济数学团队帮你解答,请及时采纳。谢谢!