飞鸟鱼虫菲菲
只对凸函数加以证明.首先我们对n是2的幂加以证明,用数学归纳法假设对于n=2^k琴生不等式成立,那么对于n=2^(k+1)(f(x1)+f(x2)+...+f(xn))/n=((f(x1)+f(x2)+...+f(x(n/2)))/(n/2)+(f(x(n/2+1))+...+f(xn))/(n/2))/2≥(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2≥f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)=f((x1+x2+...+xn)/n)所以对于所有2的幂,琴生不等式成立.现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n然后我们设x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n代入2^k阶的琴生不等式结论,整理后就可以得到结论.现在看看如何使用琴生不等式证明平方平均不等式(x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2显然,我们可以查看函数f(x)=x^2由于(f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4≥(x1^2+x2^2+2x1x2+(x1-x2)^2)/4≥(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2所以f(x)=x^2是凸函数所以我们可以得到,对于任意x1,x2,...,xn,有(f(x1)+f(x2)+...+f(xn))/n≥f((x1+x2+...+xn)/n)也就是n阶平方平均不等式.从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦.不过如果利用数学分析我们可以有个非常方便的结论.如果f(x)二阶可导,而且f''(x)≥0,那么f(x)是下凸函数(凸函数)如果f(x)二阶可导,而且f''(x)≤0,那么f(x)是上凸函数(凹函数)至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明的.(或者构造一个函数采用中值定理)
zq13301666852
詹森不等式是以丹麦数学家约翰·詹森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。
琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。
不等式定义
一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0。
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
上维基百科,有中英多语的
平均值不等式的应用的文献资料我有一些,你给我留个邮箱,我直接发给你吧,上边那些都是代写,可以忽略掉了
按照自己内容的研究方向和进度写,具体如下: 20xx-3-01~20xx-3-19:确定论文方向,写出开题报告。 20xx-3-22~20xx-3-26:实习准
平均值不等式的应用的文献资料我有一些,你给我留个邮箱,我直接发给你吧,上边那些都是代写,可以忽略掉了
只对凸函数加以证明.首先我们对n是2的幂加以证明,用数学归纳法假设对于n=2^k琴生不等式成立,那么对于n=2^(k+1)(f(x1)+f(x2)+...+f(