美食家Kitty
已知总头数和总脚数,问鸡兔各几只公式:兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) 鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)方法一: 设全部都是鸡总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2兔子数=实际总脚数的一半-总头数方法二:假设都是兔子,总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚实际脚数比都是兔子少,少了多少个2,就是鸡数鸡数=2个总头数-实际总脚数的一半抬腿法方法一假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。方法二假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。方法三我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。方法四让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数兔子数=实际总脚数的一半-总头数方法五假设法(通俗)假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数鸡下翅膀法让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数鸡数=2个总头数-实际总脚数的一半三年级后公式:鸡数=2倍总头数-总脚数的一半,兔数=总脚数的一半-总头数鸡脚数=2倍鸡数兔数=总头数-鸡数兔脚数=4倍兔数=4倍(总头数-鸡数)=4倍总头数-4倍鸡数总脚数=鸡脚数+兔脚数=2倍鸡数+(4倍总头数-4倍鸡数)=4倍总头数-2倍鸡数2倍鸡数=4倍总头数-总脚数鸡数=2倍总头数-总脚数的一半兔数=总头数-鸡数=总头数-(2倍总头数-脚数的一半)=总脚数的一半-总头数方程法鸡数=2倍总头数-总脚数的一半兔数=总脚数的一半-总头数方法一假设其中的兔子数是x那么鸡数就是总头数-x总脚数=4x+2(总头数-x)总脚数=2x+2总头数2x=总脚数-2总头数x=(总脚数-2总头数)/2 x=总脚数/2-总头数方法二假设其中的鸡数是x那么兔子数就是总头数-x总脚数=2x+4(总头数-x)2x=4总头数-总脚数x=2总头数-总脚数/2
大财891088
什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科。各门科学的“数学化”,是现代科学发展的一大趋势
豪廷布艺
这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。
青春冰帝
要么设所有的是鸡,要么设所有的是兔,用脚数乘总个数,如果大于总脚数,用你算出的减题中的,除以2,就是另一种的的个数,如果小于总脚数,用题中的减你算出的,除以2,就是另一种的的个数。(我4年级,只知道这些。)
carefreeyu
例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 1)假设全是鸡,则应该有脚: 2×35=70(只) 因为把有4只脚的兔当成了鸡,所以比总脚数会少一些比总脚数少的脚数: 94-70=24 (只)少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)有一只兔,就少算了1个2,2只兔少算了2个2……24里共有几个2,就是兔的只数: 24÷2=12(只)剩下的就是鸡的只数: 35-12=23(只) 2)假设全是兔,则应该有脚: 4×35=140(只) 因为把有2只脚的鸡当成了兔,所以比总脚数会多一些比总脚数多的脚数: 140-94=46(只)多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)有一只鸡,就多算了1个2,2只鸡多算了2个2……24里共有几个2,就是鸡的只数: 46÷2=23(只)剩下的就是兔的只数: 35-23=12(只) 补充题:班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?
第一步,制作骨架。纸灯笼比较简单的形状是立方体或圆柱体,最好选用可以弯曲的竹枝或竹皮搭成框架,衔接的地方用细线绑紧。如果不好找,细长条状的硬纸板和烧烤用的竹签也
科学,分科而学的意思,后指将各种 知识通过 细化 分类(如数学、物理、 化学等)研究,形成逐渐完整的知识体系。下面是我为你带来的六年级科学小论文作文 ,欢迎阅读
如果你想看那些与时装艺术无关的八卦呢,什么瑞丽,芭莎,Elle世界时装之苑,米娜什么的,都行,差不多的。如果想真正看点关于时装周,设计师,艺术类的呢,我建议直接
小兔子是惹人喜爱的小动物,它的毛色有白色,也有灰色的。它长着一双圆溜溜的红眼睛,像两颗玛瑙一半。耳朵长长的,尖尖的,还会转动呢。尾巴短短的,毛茸茸的,微微向上翘
什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。