• 回答数

    3

  • 浏览数

    182

建安五金
首页 > 论文发表 > 卷积神经网络论文好发表吗

3个回答 默认排序
  • 默认排序
  • 按时间排序

颂美装饰

已采纳

论文中转 : ImageNet Classification with Deep Convolutional Neural Networks

自Le Net-5在1998年提出以后,时隔14年,AlexNet横空问世,在2012年ImageNet竞赛中以冠军的成绩笑傲群雄,也就是从那时起,更多更优秀的网络被相继提出。论文第一作者是来自多伦多大学的Alex Krizhevsky,因此网络称为Alex Net。

在论文中,作者训练了一个大而深(相比于之前)的卷积网络用于ImageNet比赛,将120万高分辨图像分为1000个类别。在测试集上,分别达到了37.5%的top-1错误率和17.0%的top-5错误率,超越了先前最好的网络。网络共有600万参数,65万个神经元,5个卷积层加3个全连接层,输出为1000类别。为了防止过拟合,作者采用了数据扩充和dropout正则法,实验结果表明此方法非常有效;为了加快训练速度,作者采用了两块并行的GPU同时对特征图进行运算。

由于采用了双GPU模式,所以结构图呈现的是上图的样子,下面引用一张博客作者 chenyuping666 文章的图片,可以详细的了解网络内部结构与实现细节。

从上图可以看到,输入为227×227×3的图像

在conv1中 ,卷积核大小为11×11,步长为4,通道数为96(每台GPU运算48个,下同),经过激活函数Relu激活后,采用最大池化(size=3×3,stride=2),标准化,输出为27×27×96。

在conv2中 ,卷积核大小为5×5,步长为1,通道数256,先对输入特征图扩展像素为31×31(pad=2),然后卷积,激活,池化(size=3×3,stride=2),标准化,输出特征图为13×13×256。

在conv3,conv4中 ,卷积核大小都为3×3,步长为1,pad=1,通道数为384,经过激活后输出特征图为13×13×384。

在conv5中 ,卷积核大小都为3×3,步长为1,通道数为256,经过激活,池化后输出特征图为6×6×256。

在fcn6,fcn7中 ,共有4096个神经元,采用了dropout技术防止过拟合。

在fcn8 ,也就是最后一层,采用softmax输出1000个类别。

相比于之前的网络,AlexNet为何能取得比较好的结果呢,从作者的论文中可以发现以下几点:

3.1 非线性激活函数Relu 在之前一般使用tanh(x)或sigmoid作为激活函数,但这些饱和的线性函数在梯度的计算上非常缓慢,并且容易产生梯度消失问题。Relu的出现使这些问题得到了有效的解决。在基于cifar-10数据集的标准四层网络测试中,采用tanh和Relu作为激活函数使error rate达到0.25所用的时间,Relu比tanh快大约6倍。

3.2 多个GPU 作者认为计算资源的大小限制了网络的大小,要想训练大的网络结构,必须拥有足够的计算资源。120万的数据集太大以至于单个GPU不足以匹配,因此作者将网络的计算任务分配到两个GPU上执行。目前GPU特别适合做并行化,因为一个GPU可以直接从另一个GPU读和写内容,而不需要经过主机内存。

3.3 局部响应归一化(LRN) 作者在文章中提出了Local Response Normalization的方法,分别将top-1和top-5错误率降低了1.4%和1.2%。作者在文中提到,如果训练样本产生一个正输入到Relu,网络只会在那个特定神经元上学习,但是引入局部响应正则化后,提高了网络的泛化能力。这种响应归一化会产生一种由某一神经元所激发的横向抑制,为由使用不同卷积核计算的神经元输出之中的“big activities”创造竞争。

3.4 重叠池化 一般的池化操作因为没有重叠,所以pool_size 和 stride是相等的。例如6×6的图像在size=2×2的池化后,输出为3×3,但是本文使用的size

246 评论

小燕子an

图神经网络好发论文吗如下:

图神经网络将深度学习的预测能力应用于丰富的数据结构中,这些数据结构将物体及其对应关系描述为图中用线连成的点,图神经网络读博好。在图神经网络中,被称为“节点”的数据点通过被称为“边”的线连接,各种元素均以数学形式表达,这使机器学习算法可以在节点、边或整个图的层面做出有用的预测。

这个理科生应该都清楚,图有点(Vertex)和边(Edge)两部分组成,一个图就代表了各个实体节点(node)之间的关系(edge):每个节点或者边都可以包含它的一些属性信息,比如如果一个节点表示一个人,那么就可以包含这个人的姓名、性别、身高、体重之类的..我们研究需要的信息。而这些信息,都可以用通用的向量的形式存入其中:

还有别忘了一点,边是可以有方向的,按此我们还能分为有向图或是无向图。边的方向代表了信息的传递方向,例如a是b的微信好友,那b也是a的微信好友,好友关系自然是没方向的,而比如a是b的爹,那显然b就不是a的爹,此时叫爹的关系就是有有方向的。图结构的构建是非常灵活的,可以根据个人的设计构建出各种不一样的图。而作为开发者显然要结合实际解决的问题来构建合适的图。

280 评论

年糕年糕熊

卷积神经网络毕设难。根据查询相关资料信息显示,毕业设计对于每个学生而言都是一种十分痛苦的渡劫仪式,包括卷积神经网络。完成一个实现图像分类任务的卷积神经网络的项目,包括训练数量和用于识别后期还加了批量识别图片的需求两个部分。

117 评论

相关问答

  • 神经网络发表论文

    要看你写的怎么样咯,现在神经网络方面大体上已经比较完善了,你要选择一个很细的点来做研究,审稿人觉得你这研究有理有据,之前没人细致研究过你这个点,就很容易发啦

    大尾巴狼外婆 4人参与回答 2023-12-10
  • 基于卷积神经网络论文发表

    这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了6.7篇国内近3年计算机视觉和

    id独自等待 2人参与回答 2023-12-10
  • 神经网络论文发表

    相对好发,但是你要看你用来做什么,首先神经网络的目的要说清楚,再次,如果结合具体的对象就更好发了,因为如果你是专门做神经网络的话做深一点可以,如果是结合其他领域

    温江成都银行 4人参与回答 2023-12-07
  • 神经网络投稿期刊

    应用智能(Applied Intelligence)的proof一般指的是把技术应用到实际的场景中,以验证其可行性和有效性。一般来说,这个proof的时间取决于

    童心惠敏 4人参与回答 2023-12-11
  • 利用神经网络发表论文

    用命令savefilenamenet可以保存网络。人工神经网络或联结主义系统是受构成动物大脑的生物神经网络的启发但不完全相同的计算系统。人工神经网络是基于称为人

    爱吃的呆猫 2人参与回答 2023-12-10