豌豆大晟
在俄罗斯茹可夫斯基飞行试验中心,集俄罗斯航空工业近年来的研究成果和最新技术于一身的一37战斗机莫斯科航展上惊鸿一现,激起了世界航空界的浓厚兴趣,同时也揭起了俄罗斯开发前掠翼战斗机的神秘面纱的一角..一37战斗机可以说是世界上第一种真正的前掠翼战斗机,其特点是机翼前掠,采用非传统的三翼面鸭式气动布局,双垂尾向外倾斜,留有一对水平尾翼.一37战斗机在亚音速飞行时,具有极好的气动性能和大迎角状态下的机动性能,适于作过失速机动.不过,从概念上来说,前掠翼战斗机并非是一项全新的设计概念,它应该说是早期胎死腹中;而后又由于新技术的发展而起死回生的设计概念的典型代表.早在第二次世界大战期间,德国的飞机设计师们就已经感到,飞机在高亚音速机动时,前掠翼飞机在抑制空气压缩效应方面,似乎要明显优于后掠翼战斗机(后掠翼战斗机存在着翼尖失速问题).而且,后掠翼战斗机在结构设计方面还有很多优点,如当时德国设计制造的"容克"一87轰炸机,采用了具有15度前掠角的前掠机翼,这一设计使机翼与机体结构的衔接避开了弹舱位置,从弹舱的后面通过.又如1964年首<>飞的德国一320汉莎商务机,其前掠翼设计使机翼衔接处位于增压式座舱的后面,从而非常轻松地与机体融合在一起.不过,必须指出的是,以上两种飞机机翼的前掠角都被严格地限制在15度以内.然而,尽管人们开始认识到前掠翼飞机存在着许多潜在的优点,可是前掠翼飞机并没有得到全面发展,反而夭折在了襁褓之中,这是由于在当时还有许多技术上的难点无法克服.我们知道,对于后掠翼飞机来说,当机翼迎角增大,升力增大时,机翼会产生负囝倪志明马红丽/文扭转(机翼外洗),也就是机翼产生的扭转变形使机翼后缘抬高,前缘降低,机翼相对于气流来向的迎角减小,从而减小了升力.这时,机翼的结构是稳定的,只是,在大迎角状态下会产生翼尖失速,而且机翼的弯曲会诱发颤振.对于金属结构的前掠机翼来说,情况却正好相反,当迎角增大时,升力增大,机翼产生正扭转(机翼内洗),也就是机翼产生的扭转变形使得机翼的前缘抬高,后缘降低,机翼相对于气流来向的迎角反而增大,使机翼升力和扭转变形继续增大.这种不稳定性称为气动弹性发散现象,机翼前掠角度越大,这种现象就越严重.实践经验表明,对于后掠机翼可能产生的颤振问题,可以通过重力补偿(比如在机翼前缘采用较重的金属结构,从而人为地设定一个反作用力矩)的办法来降低机翼颤振,此外,解决翼尖失速问题的方法也是多种多样的.但是,要消除前掠机翼的气动弹性发散现象,就必须增加机翼结构的强度,才能确保前掠机翼在飞机高速飞行时不被撕裂.但是加强机翼结构强度会使飞机的重量大大增加,如果前掠角度过大,金属结构的前掠翼就会过于笨重,因而在高速飞行时就不可能有很强的机动作战能力,从而抵消了前掠翼带来的优越性.显然,在当时的技术条件下,解决后掠机翼产生的问题要比解决前掠机翼产生的问题容易得多,所以,几年以后,前掠机翼技术中途停止.进入70年代以后,随着先进的复合材料技术的飞速发展,给前掠机翼技术的应用带来了新的希望.通过对复合材料的应用研究,设在美国俄亥俄州赖特一帕特森空军基地的美国空军飞行动力实验室最早提出了一种利用复合材料进行"定制"结构设计的概念.1974年,在马里兰大学攻读哲学博士学位的诺里一37采用了前掠翼布局,拥有良好的低速机动性斯??小克朗空军中校撰写的毕业论文《利用先进的复合材料消除机翼正扭转》,第一次将"定制"结构设计与前掠机翼联系起来.所谓"定制"结构设计,就是在采用复合材料制造机翼结构时,通过精心计算,有意识地改变前掠机翼复合材料中碳纤维的线性分布(如方向,厚度等),控制好前掠机翼的扭转力矩轴,使机翼受载时,升力产生的扭转力矩与复合材料制造的这种前掠机翼"固有的"几何力矩相互抵消,从而控制住前掠机翼的扭转变形方向,使前掠机翼变成稳定结构.应该说,小克朗中校的论文写得正是时候,因为当时的飞机设计师们正好也在思考如何解决飞机在大迎角状态下作战的问题.在大迎角状态下,后掠翼飞机往往容易遇到无法克服的翼尖失速,过度的上反角效应和副翼失效等问题.1977年,美国国防部高级研究设计局()开始出资让通用动力公司,格鲁曼公司和洛克韦尔公司分别进行前掠机翼结构的模型试验.通用动力公司以一16战斗机为基础设计了一架尾翼后置的前掠翼飞机,但是另外两家公司开发的则是鸭式布局的前掠翼飞机.采用鸭式布局,其前置翼面的下洗气流能够有效地抑制和消除前掠翼飞机特有的翼根失速现象,因此,鸭式布局比较适用于前掠翼飞机.1981年,格鲁曼航空航天公司(即现在的诺思罗普公司)与美国国防部高级研究设计局签署合同,开始开发研究一29前掠翼验证机,并制造了两架样机,这两架样机的机翼部分全部采用了碳纤维环氧复合材料,1984年,第一架前掠翼试验飞机一29在美国爱德华空军基地正式升空,从1984年12月14日到1992年1月18日,两架一29验证机先后进行了成功的试验飞行.采用复合材料后,前掠机翼的优点马上就发挥出来了,它不仅具有后掠机翼提高临界马赫数,降低波阻的优点,还从根本上克服了翼尖失速的缺点.加上布局的特点,使它具有下列主要优点:一是升力特性好.由于前掠机翼没有翼尖失速问题,因此,大部分机翼的潜力能充分发挥,产生出最大升为.于是,低速性能尤其是起飞着陆性能远远优于后掠翼飞机,能在更短的跑道上起降.二是升阻比高.前掠机翼不仅有用升力大,而且升力展向分布较好,即使在大迎角下,展向仍能保持椭圆分布,因此,诱导阻力小,升阻比高.升阻比的提高,增大了飞机的最大航程和作战半径.三是大迎角时操纵性好.前掠机翼克服了翼尖失速的缺点后,即使在大迎角下,仍能保证副翼有良好的操纵性能.四是采用前掠机翼的飞机便于采用近距耦合鸭式布局.此外,采用前掠机翼的飞机还有一些其他优点,例如,配平阻力小,超音速航程大,具有抗螺旋特性,飞机布局灵活性大等.目前,最新型的前掠翼飞机就是俄罗斯苏霍伊设计局设计的一37前掠翼战斗机.一37于1997年9月23日进行首飞
hereparadox
里面图文并茂,很详细的。机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根本就没有接头。以下是典型的梁式机翼的结构。一、纵向骨架 机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示)。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。靠后缘的纵樯还可以悬挂襟翼和副翼。* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。* 加强翼肋就是承受有集中载荷的翼肋。 随着现代航空技术的进步,新的飞行动力理论的应用,飞机机身的外形也呈现千姿百态,变化多端,如隐身战斗机所使用的机翼和机身融为一体的翼身融合体;除去机身和尾翼的飞翼;除去机翼的升力体机身;以汽车作为机身的汽车飞机等等。 三、蒙皮 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮除了形成和维持机翼的气动外形之外,还能够承受局部气动力。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。 * 按机翼的数量分类:可分为单翼机、双翼机、多翼机等; * 按机翼的平面形状分类:可分为平直翼、后掠翼、前掠翼、三角翼等等; * 按机翼的构造形式分类:可分为构架式、梁式、壁板式、整体式等等。此外,机翼的剖面形状也是多种多样,随着生产技术以及流体力学的发展,从早期的平直矩形机翼剖面到后来的流线形剖面、菱形剖面,机翼的升力性能越来越好,相反受到的空气阻力越来越小,也就是说机翼的升力系数越来越大,相同面积的机翼所产生的升力就越来越大。尽管机翼的外形五花八门、多种多样,然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使结构重量尽可能的轻。所谓良好的气动外形,是指升力大、阻力小、稳定操纵性好。以下是用来衡量机翼气动外形的主要几何参数 翼展:翼展是指机翼左右翼尖之间的长度,一般用l表示。 翼弦:翼弦是指机翼沿机身方向的弦长。除了矩形机翼外,机翼不同地方的翼弦是不一样的,有翼根弦长b0、翼尖弦长b1。一般常用的弦长参数为平均几何弦长bav,其计算方法为:bav=(b0+b1)/2。 展弦比:翼展l和平均几何弦长bav的比值叫做展弦比,用λ表示,其计算公式可表示为:λ=l/ bav。同时,展弦比也可以表示为翼展的平方于机翼面积的比值。展弦比越大,机翼的升力系数越大,但阻力也增大,因此,高速飞机一般采用小展弦比的机翼。 后掠角:后掠角是指机翼与机身轴线的垂线之间的夹角。后掠角又包括前缘后掠角(机翼前缘与机身轴线的垂线之间的夹角,一般用χ0表示)、后缘后掠角(机翼后缘与机身轴线的垂线之间的夹角,一般用χ1表示)及1/4弦线后掠角(机翼1 /4弦线与机身轴线的垂线之间的夹角,一般用χ0.25表示)。如果飞机的机翼向前掠,则后掠角就为负值,变成了前掠角。 根梢比:根梢比是翼根弦长b0与翼尖弦长b1的比值,一般用η表示,η=b0/b1。 相对厚度:相对厚度是机翼翼型的最大厚度与翼弦b的比值。 除此之外,机翼在安装时还可能带有上反角或者下反角。 上反角是指机翼基准面和水平面的夹角,当机翼有扭转时,则是指扭转轴和水平面的夹角。当上反角为负时,就变成了下反角(Cathedral angle)。 机身 飞机机身的功用主要是装载人员、货物、燃油、武器、各种装备和其他物资,它还可用于连接机翼、尾翼、起落架和其他有关的构件,并把它们连接成为一个整体。按照机身的功用,首先在使用方面,应要求它具有尽可能大的空间,使它的单位体积利用率最高,以便能装载更多的人和物资,同时连接必须安全可靠。应有良好的通风加温和隔音设备;视界必须广调,以利于飞机的起落。 其次在气动方面,它的迎风面积应减小到最小,表面应光滑,形状应流线化而没有突角和缝隙,以便尽可能地减小阻力。另外,在保证有足够的强度、刚度和抗疲劳的能力情况下,应使它的重量最轻。对于具有气密座舱的机身,抗疲劳的能力尤为重要。 飞机机身的型式一般有机身型、船身型和短舱型,机身型是陆上飞机的机体,水上飞机机体一般采用船身型,至于短舱型则是没有尾翼的机体,它包括双机身和双尾撑。另外,二战中还有一种侦察/轰炸飞机,介于双机身和双尾撑形式之间:一侧机身有座舱,另一侧机身则连接尾翼,这种不对称布局在飞机上较少见。机身的外形和发动机的类型、数目及安装位置有关。例如活塞发动机螺旋桨式飞机的机身,就与喷气式发动机飞机的机身有所不同。 从机身外形来看,不外乎侧面形状和剖面形状两种。侧面形状一般为拉长的流线体。现代飞机的侧面形状受到驾驶舱的很大影响。有的驾驶舱平滑地露于气流之中,有的则埋藏在机身之内,前者多用于中小型飞机,后者多用于大型飞机。现代超音速战斗机根据跨音速飞行的阻力特点,首先采用了跨音速面积律,即安装机翼部位的机身截面适当缩小,形成蜂腰机身;其次它的机头往往做得很尖,或者在头部用空速管作为激波杆,远远地伸出在迎面气流之中。这也有助于削弱激波的强度,减小波阻;第三是随着速度的不断增长,飞机机身的“长细比”不断增大,即用细而长的旋转体作机身。现代超音速飞机机身的长细比已超过10。所谓长细比即是机身长度与机身剖面的最大直径的比值,这一比值越大,则机身越细越长。而且随着速度的提高,飞机机身相对于机翼尺寸也越来越大。 还有些超音速飞机为了减小阻力,尽量将驾驶舱埋藏于机身外形轮廓线之内。这样就使得飞机在着陆时座舱视界大大恶化。为了改善这种情况,就将机头做成活动的,着陆时可以下垂。例如“协和”号超音速旅客机机头就可下垂17.5度。 其机头可有三种状态。超音速飞行时,机头呈流线形;亚音速飞行时,档整流罩放下,以扩大驾驶员的视界;进场和着陆时则全部下垂,驾驶员视界就更扩大了。常用的机身剖面形状有圆、椭圆、方、梯形等,这些形状适用于不同用途及速度范围的飞机。例如低速飞机可用方形,而具有气密座舱的高亚音速大型客机,则多用圆形或椭圆形。喷气式战斗机一般采用不规则的形状。 随着现代航空技术的进步,新的飞行动力理论的应用,飞机机身的外形也呈现千姿百态,变化多端,如隐身战斗机所使用的机翼和机身融为一体的翼身融合体;除去机身和尾翼的飞翼;除去机翼的升力体机身;以汽车作为机身的汽车飞机等等。
战争中,如何有效保存自己、消灭敌人,这是交战双方都必须解决的首要问题。随着科学技术的发展,军用隐身技术得到了飞速发展,尤其在军用飞机上得到了广泛的应用。目前世界
按机翼平面形状可分为平直翼飞机、后掠翼飞机、三角翼飞机和前掠翼飞机。早期的飞机多采用矩形平直机翼,以便于制造。以后为减轻结构重量、减小阻力,多采用椭圆形和梯形平
成都航空职业技术学院代码是12064,院校代号是全国各高校录取时为方便考生填报志愿而加注的由数字组成的代号串,即院校代码或学校代码。院校代码就如同是学校的一个身
在俄罗斯茹可夫斯基飞行试验中心,集俄罗斯航空工业近年来的研究成果和最新技术于一身的一37战斗机莫斯科航展上惊鸿一现,激起了世界航空界的浓厚兴趣,同时也揭起了俄罗
纤维增强树脂基复合材料层合结构具有比强度高、比刚度大、阻尼特性好、疲劳寿命长、结构可设计性强等优点,在航空、航天及一些特殊领域中被广泛使用。然而,复合材料的各向