一点流殇
根据钟慢效应,实验室测得的寿命与固有寿命的比值是洛伦兹因子γ=1/√1-v^2/c^2,根据题意γ=n,根据以上两式可以得到粒子的速度v=(√n^2-1)c/n。所以此粒子的相对论动能p=γm0v=n×m0×(√n^2-1)c/n=m0c(√n^2-1)
Here we present the derivation of the new set of equations termed, Lorentz transformations, and all the subsequent relations. LORENTZ TRANSFORMATIONS We consider o coordinate systems (frames of reference) one stationary S and one moving at some velocity v relative to S, then aording to the o postulates of Relativity, stated in the main text, the displacement in both frames is of the same form. Therefore, we have (A-1) (A-2) We should note here that in the old Galilean transformations these equations would be (A-3) which is in direct contradiction to Postulate 2, a firm experimental fact. Equations (A-1) and (A-2) can be written as (A-4)
(A-5) That is, (A-6) We are interested in finding and in terms of x and t. That is, = (x, t) (A-7) = (x, t) (A-8) This is acplished via the formation of o linear simultaneous equations as follows: (A-9) (A-10) where a11, a12, a21, and a22 are constants to be evaluated. It is required that the transformations are linear in order for one event in one system to be interpreted as one event in the other system; quadratic transformations imply more than one event in the other system. Solution of problems involving motion begins with an assumption of their initial conditions; i.e., where does the problem begin? The classical assumption is to set = 0 at = 0. Therefore, aording to S, the system appears to be moving with a velocity v, so that x = vt. We can obtain this from Equa. (A-9) by writing it in the form = a11(x - vt) so that, when = 0, x = vt. Therefore, we conclude that a12 = -va11. We can write Equations (A-9) and (A-10) as (A-11) (A-12) Substituting and into Equation (A-6) and rearranging, we get (A-13) Since this equation is equal to zero, all the coefficients must vanish. That is, (A-14) (A-15) (A-16) Solving these equations we obtain (A-17) (A-18) where β = v/c and . Thus, substituting these values in Equas. (A-11) and (A-12) we obtain the famous Lorentz coordinate transformation equations connecting the fixed coordinate system S to the moving coordinate system : (A-19) (A-20) We may also obtain the inverse transformations (from system to S) by replacing v by –v and simply interchanging primed and unprimed coordinates. This gives, (A-21) (A-22) VELOCITY TRANSFORMATIONS As a direct consequence to these new transformations, all the other mathematical operations and physical variables follow aordingly. For example, the velocity equations (though still the derivatives of the displacement) assume a new form, so the Lorentz form of the velocities is: From Equas. (A-19) and (A-20) we have: (A-23) (A-24) Therefore: (A-25) ENERGY CONSIDERATIONS Consider a particle of rest mass m0 being acted by a force F through a distance x in time t and that it attains a final velocity v. The kiic energy attained by the particle is defined as the work done by the force F. The applicable equations are, (A-26) We note that and that Substituting d(γv) in Eq. (45) and integrating, we obtain (A-27) That is, (A-28) This says that K = (m – m0)c2 and finally one sees that the total energy is equal to the sum of the kiic energy K and the rest energy E0 = m0c2. i.e., E = K + Eo = γm0c2 = γE0, (A-29) where E0 = m0c2 and E = mc2. 给分吧
E=E0/√(1-1/4)=2E0/√3 W=E-E0=E0(2/√3-1)= 938(2/√3-1) MeV
第二宇宙速度为11.2千米/秒。 相对质量公式为: M=Mo/√(1-v^2/c^2) Mo是物体静止时的质量,M是物体运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷。 你把11.2代入公式,得出运动时的质量,减去原来的质量即可。 记得把100t化为千克,1t=1000千克。 敲得真辛苦啊!希望你看得懂!
相对论是这样一个现实,每个老师都认为自己正确理解了相对论,但有些老师认为相对论是完全错误的;有些老师认为相对论是有问题的,需要修正;有些老师虽然认为相对论正确,但同一道问题,也会给出不同答案。 所以要练习,找你老师要,他给你打分,判断你的对错。
物理学和应用物理学两个专业都要学习,只是不是专门学,而是作为一科的一部分。当然一般大学里面对一些专业将其作为选修课来开的,一些非物理专业的学生也可以通过选修来“粗糙”的学习,其实物理专业学的也很浅。 劝你不要报物理专业,很没有前途的,除非你能考上硕士研究生,或者到更高的层次经行学习。
百度文库的干活
其实相对论非常的容易理解,例如狭义相对论中的光速不变性原理相对速度公式,就是通过迈克尔逊—莫雷实验的几何关系得到的,而相对论的洛仑兹座标变换公式可以通过上式进行微分变换得到。剩下的长度,时间,质量都是可以跳过洛伦兹变换得到,我这里有狭义相对论的课件,如果需要的话就告诉我
三个考点 1、时间关系式 2、长度关系式 3、质速公式、质能公式和相对论动能(当然你把它拆成三个考点也行)
lin12345610
力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!
浅析物理力学的产生及其发展
摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。
关键词:物理力学;产生;发展
一、物理力学发展需要解决的问题分析
在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。
在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。
针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。
在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。
还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。
二、新技术不断推动物理力学的发展
物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。
人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。
本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。
参考文献:
[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).
[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).
[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。
[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).
浅析力学在机械中的应用
[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。
[关键词]力学 弹性力学 断裂力学 工程力学 机械
力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。
一、力学
力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。
力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。
二、力学在机械中的应用
力学在机械中的应用广泛,其典型应用主要有以下几种:
1.弹性力学在机械设计中的应用
弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。
齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。
2.断裂力学在机械工程中的应用
断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。
首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。
其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。
再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。
最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。
3.工程力学在机械修理中的应用
工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。
三、结语
当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。
参考文献
[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).
[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).
[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).
[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).
百合海鸥
我对今日力学的认识从过去100年来力学发展的情况看,力学是一门处理宏观问题的学问.它包括相对论,但它不包括量子理论.它是用理论,通过具体数字计算解答一个个实际问题.这些问题在过去都来自工程技术,但今后也会来自自然科学的研究,如对星系的运动发展.力学是要对实际问题做出数字解答,当然要用电子计算机.这就是两方面的间题:一是对计算机的要求,看来是不会有上限的;今天已有每秒数十亿次FLoP的计算机,力学也欢迎将来每秒万亿次FLOP的巨型计算机.二是计算方法的间题;这也需要不断研究改进.力学工作也会遇到一时对解决实际间题的理论方法尚不能认为有十分把握,怎么办?这时就要设计一个实验,用实验来验证理论的关键部分,如现在要设计超声速燃烧的冲压发动机(scramjet),就要作爆燃风洞的试验,它的实验时间还不到(1/10)s,但已足够验证理论的正确性了.有了对理论的把握就可以心中有数地去解决实际课题了.总起来一句话:今日力学是一门用计算机计算去回答一切宏观的实际科学技术问题,计算方法非常重要;另一个辅助手段是巧妙设计的实验.
夏天可乐冰
液晶材料的分类、应用及其发展状况摘要介绍了液晶材料的种类及其分类性能,论述了液晶材料的应用和发展情况。关键词液晶材料;介晶相;应用1.液晶的简介和分类液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称作介晶相,是一种取向有序流体,既具有液体的易流动性,又有晶体的双折射等各向异性的特征。1888年奥地利植物学家Reinitzer首次发现液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。近二十多年来液晶材料获得迅速的发展,这是因为液晶材料的光电效应被发现,因此被广泛地应用在需低电压和轻薄短小的显示组件上,因此它一跃成为一热门的科学研究及应用的主题,目前已被广泛使用于电子表、电子计算器和计算机显示屏幕上,液晶逐渐成为显示工业上不可或缺的重要材料,液晶高分子的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门科学,而且在高分子材料、生命科学等方面都得到了大量应用。1.1溶致型液晶有些材料在溶剂中,处于一定的浓度区间内会产生液晶,这类液晶我们叫它溶致液晶。如可以利用溶致型液晶聚合物的液晶相的高浓度低黏度特性进行液晶纺丝制备强度高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。1.2热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和粘度等。在热致型液晶中,又根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。1.2.1近晶型液晶近晶相除有沿分子长轴的取向有序外,有一个沿某一方向的平移有序,近晶型液晶在所有液晶聚合态结构中最接近固体晶体,通常含有C=N或者N=N键及苯环结构,分子是厂棒状。目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。1.2.2向列型液晶向列相仅有沿分子长轴的取向有序,液晶分子呈棒状形刚性部分平行排列,该种液晶分子运动自由度大,是流动性最好的液晶,此类型液晶的粘度小,应答速度快,是最早被应用的液晶,普遍地使用于液晶电视、笔记本电脑以及各类型显示元件上。1.2.3胆甾型液晶这类液晶大都是胆甾醇的衍生物,胆甾醇本身无液晶性质,而它的衍生物均具有液晶特性,次类型液晶是由多层相列型液晶堆积所形成,为向列相液晶的一种,也可以称为旋光性的向列相液晶,因分子具有非对称碳中心,所以分子的排列呈螺旋平面状的排列,面和面之间为相互平行,而分子在各平面上为向列相。2.液晶的应用及发展状况2.1液晶材料在显示器的应用回顾液晶的发展史可以发现,尽管液晶早在19世纪60年代已经被发现,然而在相当长一段时间里,虽然液晶的许多有价值的现象早被揭露,但液晶始终只是实验室中的珍品而已。只有当液晶被用于显示器开始,它的研究才有了前所未有的动力。在这最近的几十年时间里液晶显示器有了长足的进步,目前液晶显示器已是整个领域中的佼佼者,只要稍加留意,不难发现市场上用液晶显示器的仪器仪表、计算器、计算机、彩色电视机等不仅品种越来越多,而且显示品质亦越来越高,价格越来越便宜。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有T N(扭曲向列相)模式,H T N(高扭曲向列相)模式、S T N(超扭曲向列相)模式、T F T(薄膜晶体管)模式等。其中TFT模式是近10年发展最快的显示模式。
管理心理学是现代管理理论的重要组成部分,它是一门以心理学、社会学、文化人类学和政治学等学科为基础,以组织中人的心理活动和行为反应模式为研究对象的学科。它主要探讨
学术堂整理了一篇3400字的物理论文范文供你参考:题目:大学物理理论与实验改革探索摘要:大学物理理论与实验是高等院校理工科各专业学生大学阶段的一门重要必修基础课
根据钟慢效应,实验室测得的寿命与固有寿命的比值是洛伦兹因子γ=1/√1-v^2/c^2,根据题意γ=n,根据以上两式可以得到粒子的速度v=(√n^2-1)c/n
【论文关键词】大学物理;现状分析;教学改革 【论文摘要】文章根据农科类大学物理教学的现状和教学改革的发展,从教学的几个环节,提出了大学物理教学内容及教学方法改革
写作思路及要点:首先写对军事理论课本里内容的阐述,再谈自己的感悟。 正文: 军事发展对当代的国家来说至关重要,在当前复杂的国际形势下军事发展成为巩固国防的重要手