小泥格格
首先回顾深度神经网络(DNN)的反向传播 forward: Loss Function: backward: w的梯度: b的梯度: 令: 已知 ,推导上一层 : ( 1) 单通道(极简情况) 为了简单起见,设输入X为3* 3,单通道,卷积核K为2*2,输出Y为2*2,单通道。 ,即: 在计算时会转化为: 所以,卷积运算最终转化为矩阵运算。即X、K、Y变形在之后对应矩阵变为XC、KC、YC,则 Y和K只要reshape一下就可以了,但X需要特别处理,这个处理过程叫im2col(image to column),就是把卷积窗口中的数拉成一行,每行 列,共(X.w-k+1)(X.h-k+1)行。 (2)多通道(实际情况) 下面是一张被广泛引用的说明图,图中显示的输入是3通道(3层,比如R、G、B共3个channel),输出是2通道(channel),于是总共有3*2=6个卷积核,每个核有4个元素,3*4=12,所以6个卷积核排成一个12*2的核矩阵,即为权重矩阵,把这6个KC的组合(权重矩阵)记为WC。 图中最底下一行表示两个矩阵乘积运算,就是卷积层的前向传播算法。实际编码时还会加上偏置,而且还要考虑Batchs。 如图中所示,如果输入的维度为 ,那么 上图中显示的乘法维度是: 最后将 即可 池化(Pooling):也称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。主要有: Max Pooling:最大池化 Average Pooling:平均池化 池化层的反向传播比较容易理解,我们以最大池化举例,上图中,池化后的数字6对应于池化前的红色区域,实际上只有红色区域中最大值数字6对池化后的结果有影响,权重为1,而其它的数字对池化后的结果影响都为0。假设池化后数字6的位置误差为 误差反向传播回去时,红色区域中最大值对应的位置误差即等于 ,而其它3个位置对应的 误差为0。因此,在卷积神经网络最大池化前向传播时,不仅要记录区域的最大值,同时也要记录下来区域最大值的位置,方便误差的反向传播。 而平均池化就更简单了,由于平均池化时,区域中每个值对池化后结果贡献的权重都为区域大小的倒数,所以误差反向传播回来时,在区域每个位置的误差都为池化后误差 除以区域的大小。 由前面的前向传播可知卷积核的计算为: 记: 在反向传播中, 是从后面一层(一般是激活函数层或池化层)传过来的,是一个已知量,在此基础上求 1.求 只需要reshape一下就可以得到 2.求 根据反向传播公式, 但是从 还原到 并非易事,im2col的逆映射计算复杂度高得不能接受,要计算 还得另寻它途。 下面是新的计算方式的推导: 根据前向传播: 可以计算每个 的导数: 所以: 3.求 我们的 是一个列向量,它给卷积结果的每一个通道都加上同一个标量。因此,在反向传播时,它的导数等于卷积结果的 误差在每一个通道上将所有 误差进行求和的结果,即: 由于有些公式支持的不好,所以有些地方我用了截图,如果有读不懂的,可以在评论区回复邮箱,我把word版发给你们。另外,如果大家发现我有地方写得不对或者有疑问的,麻烦评论, 我会回复并改正
tiaotiao1985
基于MATLAB的数字识别计算机与信息工程学院 本科生毕业论文 基于BP神经网络的手写数字识别算法的设计与实现 班 级: 13汉班 学 号: 姓 名: 江晓雪 指导教师: 李艳玲 2017 年 3 月 31 日 毕 业 论 文 目 录 1 绪论1 1.1 图像识别的提出1 1.2 图像识别的现状与发展趋势1 2 BP神经网络的概述2 3 手写体数字识别的实现过程4 3.1 整体线路图4 3.2 算法流程5 3.3 图像预处理10 3.4 结果分析10 4 结论11 参考文献12 全文共 13 页 4834 字 基于BP神经网络的手写数字识别算法的设计与实现 计算机与信息工程学院 2013级汉班 江晓雪 指导教师 李艳玲 副教授 摘要 本文实现了基于MATLAB关于神经网络的手写数字识别算法的设计过程,采用神经网络中反向传播神经网络(即BP神经网络)对手写数字的识别,由MATLAB对图片进行读入、灰度化以及二值化等处理,通过神经网络进行训练和测试。实验证明:该神经网络对手写数字的识别可以达到95.65%。 关键词 手写数字识别;BP神经网络;MATLAB语言 1 绪论 1.1 图像识别的提出 图像识别在信息技术发达的今天已经占据了很重要的地位,在我们实际生活中也有很多应用。所谓的图像识别,就是指通过计算机对图像进行相应的处理、分析,来达到识别不同模型的目标和任务的一种技术。对于它的提出,简单的来说,它的发展经历了三个阶段:第一个是文字识别 、第二个是数字图像处理与识别、第三个是物体识别。第一种相对来说比较简单,它的研究是从1950年开始的,一般情况是识别字母、符号和数字,无论是印刷体识别还是手写体识别,它的应用都非常广泛,但是也伴随着,这个识别的过程会更加的耗时、费力,无论是人力还是物力,都会有很大的损失;第二种就是我们所说的数字图像处理与识别,在图片的识别过程中,图片识别会有一定的误差,也会带来小小的麻烦;第三就是物体识别,而物体的识别主要指的是:在三维世界中,对于个体、环境的感知和认识进行识别,这不同于二维世界的认知,相对来说是更高级的计算机图像识别,它是以二维世界中对数字图像和模拟图像处理的办法为依据,进行更高一级的,并且结合了现代人工智能技术等学科的研究目标,研究成果已经被广泛的应用在各种工业探测机器人上,为人们的安全提供了很大的帮助。 1.2 图像识别的现状与发展趋势 随着网络的发达、电子的信息化,图像识别的应用已经非常广泛,而主要的研究工作也包括各行各业,整理以下几点对其应用的广泛度进行说明: ⒈在生物学中,对生物的原型进行研究。从生物的脑细胞结构、物体解剖等其他科学研究的方向对生物的体系结构、神经结构、神经细胞组织等生物的原型结构及其功能机理进行研究,增强对生物学更加全面的理解。 ⒉在实际应用中,建立我们需要的理论模型。根据需要应用的信息在生物学中的应用,建立需要的生物原型,也可以建立类似神经元、神经网络这样不可见的理论模型,以便可以让其更加有效的应用在生活中。建立我们生活中不能直观表现的事物模型,以便我们可以更方便的、更直观的理解事物的本质。 ⒊在信息时代中,建立网络模型以及算法研究。就是通过上面所说的,建立相应的理论模型,在这个基础上加以理解,建立我们所需要的网络模型,实现计算机应用,主要应用在网络学习算法的研究,这方面的研究工作也被人们称为技术模型研究。 ⒋信息时代的发展,让我们在生活中有很多的应用,例如:完成某种函数图像的绘制以及对其变化的形式进行分析、对图片信号的处理、模式识别等功能,建立需要的应用系统、制造机器人等等。 通过上面的说明,也就是说从开始根据生物学原理的应用,直到建立需要的神经网络模型,最后应用到图像识别当中,可以看出其模型的建立是在生活中实例的基础上,其可靠性和准确性是显而易见的,这样就大大的增加了可信度,与此同时,也减少了工作中不必要的麻烦与困扰。而在网络信息发达的今天,人类在基本粒子、宇宙空间、生命起源等科学领域方面都已经显现出很高的兴趣度,而这其中难免会有图像提取后的处理工作,所以图像识别的应用就会越来越广泛。 2 BP神经网络的概述 反向传播(Back-Propagation,BP)学习算法简称BP算法,采用BP算法的前馈型神经网络简称BP网络。BP网络是多层感知器的一种,它具备多层感知器的特点,同时也有自己的特点。多层感知器包括输入层、隐藏层、输出层,其中隐藏层可以有多个,而我们BP网络中隐藏层只有一个,其简单构造如图所示: 图1 多层感知器结构图 而我们用到的BP网络中的具体信号流如图所示,它有一个反向传播的过程,这也是对传播进行调整,使精确度更高的一种办法。如图所示,其中有两种信号流通: 图2 多层感知器的信号流 第一:函数信号 简单来说就是信号进入输入层,然后通过隐藏层到达输入层,通过输出层输出所得值,就可以完成一个函数信号。 第二:误差信号 误差信号就是在逆向的传播的过程中传输的信号。其中,有两个重要参数。一个是函数信号即sigmoid函数,还有一个就是权值的梯度运算即梯度向量。(注:sigmoid函数、权重的修正函数,如图所示。) (1) (2) 通过对两个参数的调整,完成整个算法的应用。 3 手写体数字识别的实现过程 3.1 整体线路图 整体流程图如图3所示: 图像测试 损失函数的设计与应用 可视化测试数据 神经网络的设计与训练 sigmoid函数 图3 整体流程图 部分文件调用流程图如图4所示: sigmoid checkNNGradients nnCostFunction 第八部分:实现正规化 第八部分:训练NN fmincg nnCostFunction sigmoidGradient sigmoid nnCostFunction sigmoidGradient randInitializeWeights checkNNGradients debugInitializeWeights nnCostFunction computeNumericalGradient 第五部分:sigmoid函数 第六部分:初始化参数 第七部分:实现反向传播 第三部分:前馈网络 第四部分:前馈正规化 图4 整体流程图 3.2 算法流程
〔内容提要〕本文首先回顾了人类传播史,指出信息技术的发展起着历史性杠杆作用。当今因特网及网络媒体的迅猛发展,网络传播的新特征使得传统的传播学理论难以合理解释网络
首先回顾深度神经网络(DNN)的反向传播 forward: Loss Function: backward: w的梯度:
〔内容提要〕本文首先回顾了人类传播史,指出信息技术的发展起着历史性杠杆作用。当今因特网及网络媒体的迅猛发展,网络传播的新特征使得传统的传播学理论难以合理解释网络
网络舆情报告 篇1 xx年网络舆情调研报告二随着互联网技术的普及,网络借助现代高科技手段,渗透到社会生活的方方面面,并在社会和民众中产生影响。由于城管体制和城
找一个合适的直播平台,先自己体验直播全过程,然后根据直播的相关操作,写一份直播策划案会更好。个人娱乐性直播选择的直播平台推荐:YY语音企业商业化品牌化直播选择网