• 回答数

    5

  • 浏览数

    91

bluecode12345
首页 > 期刊论文 > 图像识别技术国内外研究现状论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

面包超人311

已采纳

当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者和提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:和提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。

346 评论

唐唐sweet

图像识别技术是人工智能研究的一个重要分支,也是人们日常生活中使用最广泛的人工智能技术之一。近年来,随着深度学习技术的发展,图像识别准确率显著提高。本论文研究了图像识别的传统技术和深度学习技术,分析了深度学习技术的几点不足,并给出未来可行的解决方案。【关键词】人工智能 图像识别 深度学习1 概述图像识别技术是人工智能研究的一个重要分支,其是以图像为基础,利用计算机对图像进行处理、分析和理解,以识别不同模式的对象的技术。目前图像识别技术的应用十分广泛,在安全领域,有人脸识别,指纹识别等;在军事领域,有地形勘察,飞行物识别等;在交通领域,有交通标志识别、车牌号识别等。图像识别技术的研究是更高级的图像理解、机器人、无人驾驶等技术的重要基础。传统图像识别技术主要由图像处理、特征提取、分类器设计等步骤构成。通过专家设计、提取出图像特征,对图像进行识别、分类。近年来深度学习的发展,大大提高了图像识别的准确率。深度学习从大量数据中学习知识(特征),自动完成特征提取与分类任务。但是目前的深度学习技术过于依赖大数据,只有在拥有大量标记训练样本的情况下才能够取得较好的识别效果。

240 评论

michelle850322

主要应用领域图像识别技术可能是以图像的主要特征为基础的,每个图像都有它的特征。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。图像识别技术是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域可广泛应用。遥感图像识别航空遥感和卫星遥感图像通常用图像识别技术进行加工以便提取有用的信息。该技术目前主要用于地形地质探查,森林、水利、海洋、农业等资源调查,灾害预测,环境污染监测,气象卫星云图处理以及地面军事目标识别等。军事刑侦图像识别技术在军事、公安刑侦方面的应用很广泛,例如军事目标的侦察、制导和警戒系统;自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。生物医学图像识别在现代医学中的应用非常广泛,它具有直观、无创伤、安全方便等特点。在临床诊断和病理研究中广泛借助图像识别技术,例如CT(ComputedTomography)技术等。机器视觉作为智能机器人的重要感觉器官,机器视觉主要进行3D图像的理解和识别,该技术也是目前研究的热门课题之一。机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人。此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等。总结:人工智能前景不可限量,图像识别作为AI技术的支撑,是一种强有力的识别方式,随着AI在场景上的深入,图像识别应用领域会越来越广。

328 评论

吃货独依

图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。文字识别的研究是从 1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别, 应用非常广泛。数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。现代图像识别技术的一个不足就是自适应性能差,一旦目标图像被较强的噪声污染或是目标图像有较大残缺往往就得不出理想的结果。图像识别问题的数学本质属于模式空间到类别空间的映射问题。目前,在图像识别的发展中,主要有三种识别方法:统计模式识别、结构模式识别、模糊模式识别。图像分割是图像处理中的一项关键技术,自20世纪70年代,其研究已经有几十年的历史,一直都受到人们的高度重视,至今借助于各种理论提出了数以千计的分割算法,而且这方面的研究仍然在积极地进行着。现有的图像分割的方法有许多种,有阈值分割方法,边缘检测方法,区域提取方法,结合特定理论工具的分割方法等。从图像的类型来分有:灰度图像分割、彩色图像分割和纹理图像分割等。早在1965年就有人提出了检测边缘算子,使得边缘检测产生了不少经典算法。但在近二十年间,随着基于直方图和小波变换的图像分割方法的研究计算技术、VLSI技术的迅速发展,有关图像处理方面的研究取得了很大的进展。图像分割方法结合了一些特定理论、 方法和工具,如基于数学形态学的图像分割、基于小波变换的分割、基于遗传算法的分割等。

186 评论

1322183606ww

图像识别是立体视觉、运动分析、数据融合等实用技术的基础,可应用于导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域1.遥感图像识别2.通讯领域的应用3.指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。4.生物医学图像识别 例如CT(Computed Tomography)技术等。图像的识别江苏视图科技,专业图像识别,主要应用方向是手机拍照购物,互动营销,美术馆和博物馆的手机导览增值服务,目录销售,网站商品相似搜索等等。

341 评论

相关问答

  • 国内外图书资料研究现状论文

    国内外研究现状也就指的是文献综述,只是文献综述的写法思路中一种是可以分成国内和国外研究现状两个角度进行描写,因此也可称为国内外研究现状,其主要是涵盖与本研究主体

    月语星纱 3人参与回答 2023-12-11
  • 人脸识别国内外研究现状论文

    题名 题名相当于论文的标签,是简明、确切地反映论文最重要特点内容、研究范围和深度的最恰当的词语的逻辑组合,通常是读者最先浏览的内容,也是检索系统首先收录的部

    贝贝克2011 3人参与回答 2023-12-05
  • 模式识别国内外研究现状论文

    相关范文:数据挖掘技术及其应用摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从

    冰雪江天 4人参与回答 2023-12-07
  • 图像识别技术国内外研究现状论文

    当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年Do

    bluecode12345 5人参与回答 2023-12-11
  • 艺术治疗国内外研究现状论文

    音乐治疗作为国内一种相对比较新颖的心理以及生理辅助治疗 方法 ,正越来越多地引起医疗及保健行业的重视和青睐。下文是我为大家搜集整理的关于音乐疗法论文参考的内

    童童564852078 3人参与回答 2023-12-10