• 回答数

    3

  • 浏览数

    326

贝贝哈拉
首页 > 期刊论文 > 常微分方程边值问题研究论文自述

3个回答 默认排序
  • 默认排序
  • 按时间排序

damaodaomao

已采纳

数值分析第七章常微分方程初值问题的数值解法读书报告应该包含以下内容:1、引言:简要介绍什么是常微分方程初值问题,它在什么领域中的应用以及数值解法的重要性。2、常微分方程的数值解法:介绍7章中涉及的不同数值解法,如欧拉法、龙格-库塔法等,并解释它们是如何工作的以及它们的优缺点。3、数值解法的误差分析:解释误差及误差来源, 如截断误差、舍入误差等,并提供如何减少误差的方法。4、例题分析:给出几个简单的例子,介绍如何使用不同数值解法来求解常微分方程初值问题。详细讨论每个数值解法的优缺点,并比较它们的精度和稳定性。5、结论和建议: 总结数值分析第七章讨论的常微分方程初值问题数值解法,指出每种方法的优缺点,并给出适用于不同应用场景下的建议。6、参考文献 :列出用于研究数值分析第七章常微分方程初值问题的数值解法的参考文献。

171 评论

腾瑞水暖卫浴

根据你的要求,

333 评论

成都囡囡

本文归纳常见常微分方程的解析解解法以及基于Python的微分方程数值解算例实现。

考虑常微分方程的解析解法,我们一般可以将其归纳为如下几类:

这类微分方程可以变形成如下形式: 两边同时积分即可解出函数,难点主要在于不定积分,是最简单的微分方程。

某些方程看似不可分离变量,但是经过换元之后,其实还是可分离变量的,不要被这种方程迷惑。

形如 的方程叫做一阶线性微分方程,若 为0,则方程齐次,否则称为非齐次。

解法: (直接套公式)

伯努利方程 形如 的方程称为伯努利方程,这种方程可以通过以下步骤化为一阶线性微分方程: 令 , 方程两边同时乘以 ,得到 即 . 这就将伯努利方程归结为可以套公式的一阶线性微分方程。

形如 的方程称为二阶常系数微分方程,若 ,则方程称为齐次的,反之称为非齐次的。以下默认方程是非齐次的。

求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

首先假设 .用特征方程法,写出对应的特征方程并且求解: 解的情况分为以下三种:

情况一:方程有两个不同的实数解

假设两个实数解分别是 , 此时方程的通解是 情况二:方程有一个二重解 假设该解等于 ,此时方程的通解是 情况三:方程有一对共轭复解 假设这对解是 , 此时方程的通解是

对于 和特征根的情况,对特解的情况做如下归纳:

形如 的方程叫做高阶常系数微分方程,若 ,则方程是齐次的,否则是非齐次的。下面默认方程是非齐次的。

求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

考虑带有第三类边界条件的二阶常系数微分方程边值问题

问题一:两点边值问题的解析解

由于此方程是非齐次的,故 求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

首先假设 . 用特征方程法,写出对应的特征方程 求解得到两个不同的实数特征根: .

此时方程的齐次通解是

由于 . 所以非齐次特解形式为 将上式代入控制方程有 求解得: , 即非齐次特解为 .

原方程的解 = 齐次通解 + 非齐次特解

于是,原方程的全解为 因为该问题给出的是第三类边界条件,故需要求解的导函数 且有 将以上各式代入边界条件 解此方程组可得: .

综上所述,原两点边值问题的解为

对一般的二阶微分方程边值问题 假定其解存在唯一, 为求解的近似值, 类似于前面的做法,

考虑带有第三类边界条件的二阶常系数微分方程边值问题

问题二:有限差分方法算出其数值解及误差 对于 原问题 ,取步长 h= ,用 有限差分 求其 近似解 ,并将结果与 精确解y(x)=-x-1 进行比较.

因为

先以将区间划分为5份为例,求出数值解

结果:

是不是解出数值解就完事了呢?当然不是。我们可以将问题的差分格式解与问题的真解进行比较,以得到解的可靠性。通过数学计算我们得到问题的真解为 ,现用范数来衡量误差的大小:

结果:

接下来绘图比较 时数值解与真解的差距:

结果:

将区间划分为 份, 即 时.

结果:

绘图比较 时数值解与真解的差距:

最后,我们还可以从数学的角度分析所采用的差分格式的一些性质。因为差分格式的误差为 , 所以理论上来说网格每加密一倍,与真解的误差大致会缩小到原来的 . 下讨论网格加密时的变化:

结果:

191 评论

相关问答

  • 常微分方程初值问题毕业论文

    有个未知数u怎么用数值来做啊

    自high患者 6人参与回答 2023-12-06
  • 常微分方程大学生毕业论文

    根据你的要求,

    芯是酸的 4人参与回答 2023-12-05
  • 偏微分方程论文题目

    wsdxs.cn/html/shuxue

    傲慢的猩猩 4人参与回答 2023-12-10
  • 毕业论文常微分方程

    要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】

    爱我大兴 4人参与回答 2023-12-07
  • 常微分方程的发展史毕业论文

    随着分析学对函数引入微分运算,表示未知函数的导数以及自变量之间的关系的方程进入数学家的视野,这就是微分方程。微分方程的形成与发展与力学、天文学、物理学等科学技术

    飞天之梦想 3人参与回答 2023-12-08