首页 > 期刊发表知识库 > 机器人文献综述

机器人文献综述

发布时间:

机器人文献综述

第三方的说法

医疗机器人是目前国外机器人研究领域中最活跃、投资最多的方向之一,其发展前景非常看好。近年来,医疗机器人技术引起美、法、德、意、日等国家学术界的极大关注,研究工作蓬勃兴起。二十世纪九十年代起,国际先进机器人计划(IARP)已召开过多届医疗外科机器人研讨会DARPA己经立项,开展基于遥控操作的外科研究,用于战伤模拟手术、手术培训、解剖教学。欧盟、法国国家科学研究中心也将机器人辅助外科手术及虚拟外科手术仿真系统作为重点研究发展的项目之一在发达国家已经出现医疗外科手术机器人市场化产品,并在临床上开展了大量的病例应用研究。随着科学技术的发展, 特别是计算机技术的发展, 医用机器人在临床中的作用越来越受到人们的重视。外科手术辅助导航系统作为外科医生的第三只眼, 可以让手术医师看到手术部位的内部结构, 避免了因医生经验不足而造成的手术失误, 使手术更安全、更可靠、更精确、更科学, 具有极其广阔的应用前景。现在, 它已经成功地应用到神经外科、整形外科、泌尿科、脊椎、耳鼻喉科、眼科、膝关节切除以及腹腔镜等众多领域中。由此, 依靠医学成像、微装置、传感器、计算机和机械手等的辅助, 从一个开放的、完全的人工手术到辅助医生进行最小侵入性手术。另外, 医生在选择最佳的手术路径、执行复杂的外科手术和提高手术的成功率等方面也受益匪浅。微创外科手术(MIS)技术兴起于20世纪80年代,一般也称为介入式手术。它借助于各种视觉图像设备和先进灵巧的手术器械装备,将手术器械经过小切口进入人体进行治疗或诊断。与传统开放性手术相比,微创手术具有创伤小,可减轻患者痛苦、术后恢复快、有利于提高手术质量和降低医疗社会成本等诸多优点。因此,受到医生和患者的普遍欢迎,是外科手术发展的必然趋势。腹腔镜微创外科手术作为微创手术的代表,是对传统开放性手术的一次重大变革。然而腹腔镜手术在手术中也存在一些问题。如由医生在手术台前操作器械进行手术时,医生的手与所操作的器械末端的距离一般有400~500mm,长时间准确把握手术器械会使医生感到非常 疲劳,另外,由于医生手部的颤抖而传递到器械末端的误差也会随之增大。而利用机器人技术就可以很好的解决上述问题。因为机器人具有定位准确、大大减低工作强度等优势,而且,它还可以通过软件编程实现消颤、提高手术精度。微创外科手术机器人与传统的工业机器人在结构上相比,系统针对性更强,通常一种结构只适用于一种手术操作。对于主从式机器人,在手术中,手术医生的决策通过主手传递到从手,通过监视从手的运动情况,调整或修正控制以达到预期的结果,实现微创手术。由于从手系统直接作用于患者,它的性能高低直接影响整个系统的性能、手术的质量、以及系统的安全性等等。随着计算机技术的不断发展, 微型计算机无论从计算速度还是从内存容量上都可以满足手术导航系统的要求。在我国, 开发基于微型计算机的小型化、低成本、高精度的手术导航系统将是一个发展趋势。1、 文献综述1 医疗机器人与其它机器人相比,医疗机器人具有以下几个特点:①其作业环境一般在医院、街道、家庭及非特定的多种场合,具有移动性与导航、识别及规避能力,以及智能化的人机交互界面。在需要人工控制的情况下,还要具备远程控制能力。②医疗机器人的作业对象是人、人体信息及相关医疗器械,需要综合工程、医学、生物、药物及社会学等各个学科领域的知识开展研究课题。③医疗机器人的材料选择和结构设计必须以易消毒和灭菌为前提,安全可靠且无辐射。④以人作为作业对象的医疗机器人,其性能必须满足对状况变化的适应性、对作业的柔软性,对危险的安全性以及对人体和精神的适应性等。⑤医疗机器人之间及医疗机器人和医疗器械之间具有或预留通用的对接接口,包括信息通讯接口、人机交互接口、临床辅助器材接口以及伤病员转运接口等。从技术上讲医疗机器人的发展是建立在以下几种基本技术的基础上:它们是机械设计与制造技术、传感器应用技术、自动控制技术、驱动器技术、人机交互技术。根据用途医疗机器人大致可以分为救援机器人、手术机器人、转运机器人和康复机器人。手术机器人在具备了机器人的基本特点同时,还有其自身的选位准确、动作精细、避免病人感染等特点。在血管缝合手术时,人工很难进行细于1 mm以下的血管缝合,如果使用手术机器人,血管缝合手术可以达到小于1 mm的精度;用手术机器人进行手术避免了医生直接接触患者的血液,大大减少了患者的感染危险。商业化的手术机器人最早出现在1994年,由美国Computer Motion公司研制,实质上是一种声控腹腔镜自动“扶镜手”,命名为AESOP。手术机器人于1997年3月在比利时布鲁塞尔St Pierre医院完成了第一例腹腔镜手术——胆囊切除术。1998年,ComputerMotion公司研制的Zeus系统、Intuitive Surgical公司研制的da Vinci系统和endoVia公司研制的Laprotek系统分别获得了成功。这三个系统均由三大部分组成:医生操纵台、机械手和内镜装置。Zeus系统采用纯信号方式实现医生操纵台对机器臂的控制,在传输距离上不受视频延迟的影响。Zeus系统于2001年9月首次成功实现了跨大西洋(美国纽约-法国斯特拉斯堡)的机器人腹腔镜胆囊切除术。目前,手术机器人不仅完成了普外科,还有脑神经外科、心脏修复、胆囊摘除、人工关节置换、泌尿科和整形外科等方面的手术。尽管如此,手术机器人还有许多方面需要不断的完善和改进,通过增加“人造视野”系统,可在手术过程中监视术野,辅助术者做出判断,增加手术的安全性;用软件来处理触觉和视觉图像的整合、分割和合成;提供稳定的触觉控制,识别不同的人体组织,进行关键解剖结构的图像识别和图像分割;具有良好的触觉反馈和位置觉。微型机电技术的不断深入发展为微小型机器人甚至纳米机器人提供了技术支持,它可以直接进入人体器官内部进行工作,完成组织取样、血管疏通、药物定点放置、微型手术和细胞操作等普通医疗技术和手段无法完成的工作。目前,国外正在研制和开发体内自主行走式诊断治疗、体内微细手术和体内药物直接投放微型外科手术机器人。医生用注射器将微型机器人推入人体内部,由它所携带的微生物传感器对人体组织进行检测,当发现有病变组织时,微型手术机器人对病变组织进行直接手术和药物注射治疗。哈尔滨工业大学机器人研究所成功研制出纳米级精密定位系统,在这个系统支持下的纳米级高精密微驱动机器人,能对细胞和染色体进行“显微手术”。纳米级机器人可在人体微观世界行走,随时清除人体中的一切有害物质,修复损坏的基因,激活细胞能量,使人不仅仅保持健康,而且延长寿命。医疗机器人将机器人技术应用到医疗领域,极大的推动了现代医疗技术的发展,是现代医疗卫生装备的发展方向之一。随着科学技术的不断更新、社会的老龄化和现代战争的高技术化,以及医疗技术的发展,各疗机器人及其辅助医疗技术将得到更深入而广泛的研究和应用,促进医疗机器人技术的快速发展。2 空间定位技术在计算机辅助导航系统中, 空间定位是整个系统的关键, 直接关系到整个系统的精度和计算机辅助手术的成败。其作用就是实时测出手术器械的空间位置和姿态, 根据定位传感器的不同, 可分为机械定位、超声定位、电磁定位和光学定位法。 (1)机械定位 机械定位是手术导航系统最初的定位方法, 属于无源定位。定位用机械手至少应有6 个自由度, 且每个关节均有编码器。和机械手相联的手术器械的位置和旋转, 能够通过机械手的几何模型和关节编码器的瞬时值计算出来,典型精度为: 2~3 mm。机械手定位的优点是不会被阻塞, 不会被障碍遮挡, 同时可在特定位置夹住或放置手术器械。缺点是在手术中较为笨拙, 施加在机械手上的压力可使数据发生变化, 同时存在固定装置和制动器的位移误差。机械定位常用于无臂系统的标定和检查。 (2) 超声定位通过测量超声波的传播时间来测量超声波发射器与接收器间的距离。在手术器械上放置N (至少大于3) 个发射器, 即可计算出手术器械的位置和姿态。该系统的绝对精度一般为5mm。超声波定位的主要问题在于温度对超声波的影响、空气位移、空气非均匀性以及发射器的大尺寸等。 (3) 电磁定位 在电磁定位系统中, 每个电磁产生线圈定义一个空间方向, 3 个线圈确定三个空间方向, 然后再根据已知的相对位置关系就可以对目标的空间位置进行定位。电磁定位系统的精度为2mm。电磁定位的精度较高, 又属于非接触式定位。但系统磁场对工作空间中的任何金属物体的引入都很敏感。 (4) 光学定位 光学定位是目前手术导航系统中的主流定位方法。以CCD 摄像机作为传感器,测量目标为安装在手术器械上的几个红外发光二极管, 通过红外发光二极管的空间位置, 计算出手术器械的位置和姿态。根据所用摄像机的不同, 光学定位可分为线阵CCD和面阵CCD两种。面阵CCD 测量系统由两个面阵CCD 摄像机组成, 采用标准镜头, 在图像中的每个光点定义了空间的一个投影线, 采用空间两个摄像机可计算其对应投影线的交点, 获得点的三维坐标。线阵CCD 测量系统采用柱面镜头, 利用3 个相对位置固定的线阵CCD 构成, 被测点与镜头的节点轴确定的平面与敏感元件垂直相交处为被测点所成的像, 通过3 个确定的平面相交可以确定被测点的空间位置。由于线阵CCD的分辨率可以做得很高(4096) , 其空间分辨率就很高, 典型的线阵CCD 导航系统精度在 5 mm 以内, 而面阵CCD 系统的典型精度为1mm。光学定位系统的优点是精度高, 处理灵活方便,但易受术中手的遮挡、周围光线及金属物体镜面反射的影响。2 虚拟现实技术虚拟现实,简称VR技术(英文名为Virtual Reality)这一名词是由美国VPL公司创建人拉尼尔在20世纪80年代初提出的,我国著名科学家钱学森将它翻译为“灵境技术”它是将模拟环境、视景系统和仿真系统合三为一,并利用头盔显示器、图形眼镜、数据服、立体声耳机、数据手套及脚踏板等传感装置,把操作者与计算机生成的三维虚拟环境链接在一起。操作者通过传感器与虚拟环境交互作用,可获得视觉、听觉、触觉等多种感知,并按照自己的意愿去改变的虚拟环境被称之虚拟现实。

1+1=2

机器人英文文献综述

Real-time Open-Platform-Based Control of Cooperating Indus trial Robotic Manipulators在中国知网上搜吧,我不方便发送。提交回答

工业机器人文献综述

我有模具类的!要的话看我名字联系我 !另外,虚机团上产品团购,超级便宜

【摘要】机器人的制造及应用水平,代表了一个国家的制造业水平,发展机器人产业应上升到国家战略高度。机器人的广泛使用是我国从制造业大国走向制造业强国的重要手段和途径。本文分析了现阶段国外工业机器人的应用、发展现状与趋势。通过实例说明了目前我国工业机器人发展的现状和未来的发展趋势,中国先进工业机器人大批量生产制造时代到来。 中国论文网 -htm【关键词】机器人;工业机器人;发展现状;发展趋势工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。一、工业机器人的应用情况经过五十多年的发展,工业机器人已在越来越多的领域得到了应用。在制造业中,尤其是在汽车产业中,工业机器人得到了广泛的应用。如在毛坯制造、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。随着工业机器人向更深更广方向的发展以及机器人智能化水平的提高,机器人的应用范周还在不断地扩大,已从汽车制造业推广到其他制造业,进而推广到机械加工行业、电子电气行业、橡胶及塑料工业、食品工业、木材与家具制造业等领域中。在工业生产中,弧焊机器人、点焊机器人、分配机器人、装配机器人、喷漆机器人及搬运机器人等工业机器人都已被大量采用。机器人正在为提高人类的生活质量发挥着重要的作用。二、国内外工业机器人的发展现状1、国外工业机器人的发展现状在国外,工业机器人技术日趋成熟,已经成为一种标准设备被工业界广泛应用。从而,相继形成了一批具有影响力的、著名的工业机器人公司,它们包括:瑞典的ABB Robotics,日本的FANUC、Yaskawa,德国的KUKA Roboter,美国的Adept Technology、American Robot、Emerson Industrial Automation、S-T Robotics,这些公司已经成为其所在地区的支柱性产业。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头[1]。在发达国家中,工业机器人自动化生产线成套设备已成为自动化装备的主流。国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。像国际上著名公司ABB、Comau、KUKA、BOSCH、NDC、SWISSLOG、村田等都是机器人自动化生产线及物流与仓储自动化设备的集成供应商。目前,日本、意大利、德国、欧盟、美国等国家产业工人人均拥有工业机器人数量位于世界前列,全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。2、国内工业机器人的发展现状在降低制造成本,解决用工严重不足等口号的呼喊下,近年来机器人产业在全世界范围内兴起。中国作为世界工厂,面临的形式更是尤为的严重。有数据显示中国每年工业机器人的装机量约占全球的1/8,仅次于日本、韩国,预计2015年中国的装机量会超过这两个国家,成为世界上使用工业机器人最多的国家。自2009年以来,中国机器人市场持续快速增长,工业机器人年均增长速度超过40%,到目前为止,中国工业机器人市场份额约占全球市场的1/5;以教育、清扫等为代表的服务机器人在国内也在逐步进入市场。随着我国门户的逐渐开放,国内的工业机器人产业将面对越来越大的竞争与冲击,因此,掌握国内工业机器人市场的实际情况,把握我国工业机器人研究的相关进展,显得十分重要。2012年,四种新型工业机器人在中国哈尔滨研制成功。专家们认为这标志着我国已经掌握了第一代工业机器人的生产技术,新的机器人产业已经在我国诞生。这四种工业机器人分别是哈尔滨工业大学和哈尔滨风华机器厂等单位研制的华宇Ⅱ型弧焊机器人,华宇Ⅰ型点焊机器人,哈尔滨工业大学与航天部811厂等单位联合研制的东方1号喷漆机器人和国营星光机器厂研制的星光Ⅰ型直角坐标点焊机器人。近年来,中国河南洛阳市越来越多的企业开始引进工业机器人等智能设备,但目前国内使用的机器80%是国外制造。位于洛阳工业园区的沃德福集团高端智能装备制造基地项目,总投资1。5亿元,将研发制造6轴工业机器人等高端智能设备,达到年产1万台工业机器人的生产、装配能力。该项目计划2014年建成投产,预计年产值20亿元,不久将在这里首次实现先进工业机器人大批量生产制造。随着便宜劳动力时代的结束,可以预计工业机器人将迎来一个伟大的时代,不仅在工业上,而且在服务、医疗等领域都有广泛的应用,从而推动一大批行业的发展,如高端制造业、制造业的个性化、医疗图像处理以及航空航天等。近十年以来,在“十五”、“十一五”攻关计划和863计划等科技计划的支持下,我国有组织、有计划地发展工业机器人产业,通过研制、生产、应用等多个层面的不断探索,在技术攻关和设计水平上有了长足的进步。总的来看,已经掌握了工业机器人的设计、制造、应用过程中的多项关键技术,能够生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人[2]。一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术、运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线(工作站)与周边配套设备的开发和制备技术等,某些关键技术已达到或接近了国际先进水平,中国工业机器人在世界工业机器人领域已占有一席之地。   三、工业机器人的发展趋势工业机器人在许多生产领域的使用实践证明,它在提高生产自动化水平,提高劳动生产率和产品质量以及经济效益,改善工人劳动条件等方面,有着令世人瞩目的作用,引起了世界各国和社会各层人士的广泛关注。1、国外发展趋势日本将机器人列为战略产业,韩国将机器人作为“增长发动机产业”,各发达国家政府早年通过制定政策,采取一系列措施鼓励企业应用机器人,设立科研基金鼓励机器人的研发设计,从政策上、资金上给予大力支持,工业机器人的应用和研究走在世界的前列。世界工业机器人市场普遍看好,各国都在期待机器人的应用研究有技术上的突破。从近几年世界机器人推出的产品来看,工业机器人技术正在向智能化、模块化和系统化的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面[3]。国外机器人领域发展近几年有如下几个趋势:(1)工业机器人性能不断提高,而单机价格不断下降。(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。(4)机器人中的传感器作用日益重要,装配、焊接机器人采用了位置、速度、加速度视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的索杰纳机器人就是这种系统成功应用的最著名实例。(7)机器人化机械开始兴起。从94年美国开发出虚拟轴机床以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域[4]。2、国内发展趋势中国工业机器人在“七五”、“九五”、“十五”期间研究取得了较大进展,我国在关键技术上有所突破,但还缺乏整体核心技术的突破,应用遍及各行各业,但进口机器人占了绝大多数。科学院机器人“十二五”规划研究目标:开展高速、高精、智能化工业机器人技术的研究工作,建立并完善新型工业机器人智能化体系结构;研究高速,高精度工业机器人控制方法并研制高性能工业机器人控制器,实现高速,高精度的作业;针对焊接,喷涂等作业任务,研究工业机器人的智能化作业技术,研制自动焊接工业机器人,自动喷涂工业机器人样机,并在汽车制造行业,焊接行业开展应用示范。国家下一步的发展思路,将发展以工业机器人为代表的智能制造,以高端装备制造业重大产业长期发展工程为平台和载体,系统推进智能技术、智能装备和数字制造的协调发展,实现我国高端装备制造的重大跨越。具体分两步进行:第一步,2012~2020年,基本普及数控化,在若干领域实现智能制造装备产业化,为我国制造模式转变奠定基础;第二步,2021~2030年,全面实现数字化,在主要领域全面推行智能制造模式,基本形成高端制造业的国际竞争优势。工业机器人市场竞争越来越激烈,中国制造业面临着与国际接轨、参与国际分工的巨大挑战,加快工业机器人的研究开发与生产是使我国从制造业大国走向制造业强国的重要手段和途径。未来几年,国内机器人研究人员将重点研究工业机器人智能化体系结构,高速高精度控制,智能化作业,形成新一代智能化工业机器人的核心关键技术体系,并在相关行业开展应用示范和推广。(1)工业机器人智能化体系结构标准研究开放式,模块化的工业机器人系统结构,工业机器人系统的软硬件设计方法,形成切实可行的系统设计行业标准、国家标准和国际标准,以便于系统的集成,应用与改造。(2)工业机器人新型控制器技术研制具有自主知识产权的先进工业机器人控制器。研究具有高实时性的,多处理器并行工作的控制器硬件系统;针对应用需求,设计基于高性能,低成本总线技术的控制和驱动模式。深入研究先进控制方法,策略在工业机器人中的工程实现,提高系统高速,重载,高追踪精度等动态性能,提高系统开放性。通过人机交互方式建立模拟仿真环境,研究开发工业机器人自动/离线编程技术,增强人机交互和二次开发能力。(3)工业机器人智能化作业技术实现以传感器融合,虚拟现实与人机交互为代表的智能化技术在工业机器人上的可靠应用,提升工业机器人操作能力。除采用传统的位置,速度,加速度等传感器外,装配,焊接机器人还应用了视觉,力觉等传感器来进行实现协调和决策控制,基于视觉的喷涂机器人姿态反馈控制;研究虚拟现实技术与人机交互环境建模系统。(4)成线成套装备技术针对汽车制造业,焊接行业等具体行业工艺需求,结合新型控制器技术和智能化作业技术的研究,研究与行业密切相关的工业机器人应用技术,以工业机器人为核心的生产线上的相关成套装备设计技术,开发弧焊机器人用激光视觉焊缝跟踪装置,喷涂线的喷涂设备的研制以及相关功能部件并加以集成,形成我国以智能化工业机器人为核心的成线成套自动化制造装备。(5)系统可靠性技术可靠性技术是与设计、制造、测试和应用密切相关的。建立工业机器人系统的可靠性保障体系是确保工业机器人实现产业化的关键。在产品的设计环节、制造环节和测试环节,研究系统可靠性保障技术,从而为工业机器人广泛应用提供保证。我国的机器人产业化必须由市场来拉动。机器人作为高技术,它的发展与社会的生产、经济状况密切相关。机器人的研制、开发只有从技术上实现可能性大为原则选择机器人优先应用的领域,并以此为突破口,向其他领域渗透、扩散至为重要。综合国内外工业机器人研究和应用现状,工业机器人的研究正在超智能化、模块化、系统化、微型化、多功能化及高性能、自诊断、自修复趋势发展,以适应多样化、个性化的需求向更大更宽广的应用领域发展。

行业主要上市企业:科大智能(300222)、沃迪智能(830843)、工业富联(601138)、远大智能(002689)、上海沪工(603131)、埃夫特(688165)、ST伯朗特(430394)、ST华昌(300278)、机器人(300024)、科远智慧(002380)、华自科技(300490)、埃斯顿(002747)、ST安控(300370)、泰禾智能(603656)等。本文核心数据:工业机器人产量、工业机器人销售额、全球工业机器人出货量TOP15国家和地区供给端:工业机器人产量大幅增长当前,新一轮科技革命和产业变革加速演进,新一代信息技术、生物技术、新能源、新材料等与机器人技术深度融合,机器人产业迎来升级换代、跨越发展的窗口期。随着后疫情时代的到来,中国工业经济展现出了应对复杂严峻局面的强大韧性和活力,工业机器人行业表现逆势上扬。根据国家统计局最新发布的数据显示,2021年我国规模以上企业工业机器人产量为30万套,同比增长9%。需求端:——工业机器人销售规模增速近20%《“十四五”机器人产业发展规划》指出,我国已经连续8年成为全球最大的工业机器人消费国。根据IFR数据显示,2020年我国工业机器人销售规模达到5亿元,同比增长9%。2021年底,工信部、国家发改委、科技部等15部门联合印发了《“十四五”机器人产业发展规划》,推动我国机器人产业在“十四五”时期迈向中高端水平。《规划》明确提出,力争到2025年,我国成为全球机器人技术创新策源地、高端制造集聚地和集成应用新高地,机器人产业营业收入年均增长超过20%,制造业机器人密度实现翻番。预计到2025年我国工业机器人销售规模将达到1051亿元左右。——工业机器人出货量居世界首位据IFR《世界机器人2021工业机器人报告》显示,中国工业机器人出货量为168400台,强劲增长20%,居世界第一位。——制造业机器人密度达到246台/万人2020年我国制造业机器人密度达到246台/万人,是全球平均水平的近2倍。——垂直多关节机器人占据半壁江山从机械结构看,据MIR统计,2020年垂直多关节机器人在中国市场中的销量在各机型中依然位居首位,全年销售总销量的63%;SCARA机器人全年销售占比为30%;另外,协作机器人与Delta机器人销售占比分别为4%与3%。综合来看,近年来,在国家政策的支持下,我国工业机器人密度不断提高,产量和销售额逐年增长。未来,随着工业机器人国产化进程加速,工业机器人行业发展空间巨大。以上数据参考前瞻产业研究院《中国工业机器人行业市场前瞻与投资战略规划分析报告》

1、供给:中国工业机器人年产量居世界首位2012-2020年我国工业机器人产量逐年上升,但近年来增速较之前有所下降,主要是因为从2018年开始国内汽车、电子等机器人下游行业发展受限,机器人需求增速放缓,但是近两年新能源汽车大力发展带动行业发展,工业机器人增速再次抬头。2020年时我国工业机器人产量达到了237068台,累计增长1%。2021年1-5月,我国工业机器人的产量为136405台,与去年同期同比增加2%。据IFR统计,2019年中国是世界工业机器人产量最高的国家,产量达到69万台。与此同时,相对于工业机器人技术较成熟的美国、德国、日本,产量远不及中国,分别为33万台、05万台与99万台。2、需求:中国工业机器人装机量居世界首位,但人均密度较低——工业机器人装机量位居世界榜首自2016年开始,中国工业机器人累计安装量位列世界第一,发展迅速。2019年,中国依然是全球最大的机器人市场,工业机器人总量达到4万台,较2018年上升7%。据高工机器人数据显示,2020年我国工业机器人销量约为17万台。注:除2020年数据来自高工机器人外,其余来自中国机器人产业联盟。——工业机器人装机密度较低从装机量来看,全球机器人消费市场高度集中,2019年中国、日本、美国、韩国和德国等主要国家销售额总计占全球销量的73%。中国是工业机器人主要的终端使用市场,年新装量4万台,其次是日本和美国,分别为99万台和3万台。从机器人的装机密度看,2019年全球工业机器人装机密度为113台/万人,新加坡和韩国是机器人装机密度最高的市场,每万人机器人装机数量分别达到918台和855台,而在需求量最大的中国市场这个数字只有187台,远落后于发达国家,未来仍有较大提升空间。——多关节机器人最畅销从机械结构看,据MIR统计,2020年垂直多关节机器人在中国市场中的销量在各机型中依然位居首位,全年销售总销量的63%;SCARA机器人全年销售占比为30%;另外,协作机器人与Delta机器人销售占比分别为4%与3%。——市场规模超过60亿美元我国工业机器人市场发展较快,约占全球市场份额三分之一,是全球第一大工业机器人应用市场。当前,我国生产制造智能化改造升级的需求日益凸显,工业机器人的市场需求依然旺盛,据IFR统计,2019年我国工业机器人销量额达3亿美元,初步估计2020年销量额达到63亿美元。3、应用情况:中国工业机器人主要用于汽车与3C领域——分行业应用情况目前中国的工业机器人主要应用于汽车行业以及3C,2019年时应用于汽车与3C电子行业的工业机器人占比分别为2%与4%;与此同时,全球范围内工业机器人的应用领域也以汽车与3C电子为主,应用占比分别为2%与6%。可以看出,中国工业机器人的应用情况与全球基本一致。——机器人应用领域占比情况在市场整体销售下行的背景下,工业机器人主要应用领域的销售出现不同程度下降。总体来看,目前,搬运与焊接依然是工业机器人的主要应用领域,自主品牌机器人在加工、焊接和钎焊、装配及拆卸、洁净室、涂层与胶封领域的市场占有率均有所提升。其中,搬运和上下料作为首要应用领域,2019年销售2万台,同比下降4%,在总销量中的比重提高至06%;焊接与钎焊机器人销售4万台,同比下降16%,占比为61%;装配及拆卸机器人销售2万台,同比下降7%,占比为89%;加工领域机器人销售同比增长5%,是唯一实现销量增长的应用领域。工业机器人行业发展前景及趋势预测1、工业机器人规模预测2020年受到疫情影响,但是由于中国措施采取及时,抗疫成效显著,企业复工复产较快,因此对工业机器人的总体产量影响较小,2020年全国工业机器人市场规模约为63亿美元,预计2021-2025年复合增长率预计在15%左右,2026年市场规模可达172亿美元。2、工业机器人共融为未来技术突破要点目前我国工业机器人主要在结构化环境汇总执行确定性任务,在复杂动态环境中作业的情况并不足够灵活,主要是因为工业机器人在与环境的共融、与其他机器人之间协同方面感知能力较弱。随着传统工业机器人在机器视觉、智能传感与云技术等技术的发展下,未来工业机器人将更智能化,柔性化,即由传统机器人向共融机器人优化。3、云化机器人及工业机器人云平台将兴起在智能制造生产场景中,需要工业机器人有自组织和协同的能力来满足柔性生产,这就带来了云化机器人(机器人大脑在云端)及工业机器人云平台的需求。和传统机器人相比,云化机器人需要通过网络连接到云端的控制中心,基于超高计算能力的平台,并通过大数据和人工智能对生产制造过程进行实时运算控制。实际上,如今已有厂商开始在云化机器人及工业机器人云平台上进行布局。2017年时华为、Skymind、中国移动、达闼科技、GTI、软银共同推出《云化机器人白皮书(GTI 5G and Cloud Robotics White Paper)》,其中指出云化机器人即位于数据中心的“大脑”利用人工智能和其他软件技术,借助本地机载控制器对传统机器人下达指令,云机器人将打来新的价值链、技术、架构、体验和新商业模式。未来,随着5G、AI、云计算等技术的发展成熟,云化机器人及工业机器人云平台或将成为新一轮发展热点。4、工业机器人在医疗领域的应用潜力有待挖掘目前工业机器人主要应用于汽车行业,随着汽车行业工业机器人应用的饱和,工业机器人的应用正在向其他领域逐步拓展。在疫情驱动下部分工业机器人厂商随即布局医疗领域的工业机器人,例如利用工业机器人组装医用注射器或或用于填充和关闭小瓶等,具体情况如下表所示:——更多本行业研究分析详见前瞻产业研究院《中国工业机器人行业产销需求预测与转型升级分析报告》。

仿生机器人文献综述

仿人机器人是源于双足机器人,而随着学科的发展,现在基本上不严格做两者的区分。也就是说现代的仿人机器人基本上就是指双足机器人。特点是不再是简单的模拟人或机器的某个动作,而是模仿人类的行走。人类的行走有个专门的交叉方向叫做步态分析,那么顾名思义,仿人机器人就是把步态分析的理论引入到了机器人当中。举个例子:步态分析里面研究出来某个判据,人行走时候某些力学特征符合这个判据的时候就不会摔倒,那么我们把这个判据引入到机器人领域,设计机器人的力学分析,就能制作仿人机器人。当然这只是我的一家之言,仅供参考,同时谢绝转载。

仿生机器人运动是仿生设计的一个新兴分支。它是从自然界中学习概念并将它们应用于实际工程系统的设计。更具体地说,这个领域是关于制造受生物系统启发的机器人。仿生学和仿生设计有时会混淆。仿生学是模仿自然,而仿生设计则是向自然学习,并创造一种比在自然中观察到的系统更简单且更有效的机制。仿生学已经促成了机器人学的另一个分支——软机器人学的发展。生物系统已经根据它们的栖息地针对特定任务进行了优化。然而,它们是多功能的,并不是只为一种特定功能而设计的。仿生机器人是研究生物系统,并寻找可能解决工程领域问题的机制。然后,设计人员应该尝试简化和增强针对特定任务的机制。仿生机器人科学家通常对生物传感器(如眼睛)、生物执行器(如肌肉)或生物材料(如蜘蛛丝)感兴趣。大多数机器人都有某种运动系统。因此,本文介绍了不同的动物运动模式和相应的仿生机器人的例子。

机器人体系结构,就是指为完成指定目标的一个或几个机器人在信息处理和控制逻辑方面的结构方式。基于功能来分解基于功能分解的体系结构在人工智能上属于传统的慎思式智能,在结构上体现为串行分布,在执行方式上属于异步执行,即按照“感知一规划一行动”的模式进行信息处理和控制实现。以美国国家航天局和美国国家标准局所提出的NASR人MtI〕为典型代表。这种体系结构的优点是系统的功能明了层次清晰,实现简单。但是申行的处理方式大大延长了系统对外部事件的响应时间,环境的改变导致必须重新规划,从而降低了执行效率。因此只适合在已知的结构化环境下完成比较复杂的工作。基于行为来分解基于行为分解的体系结构在人工智能上属于现代的反应式智能,在结构上体现为并行(包容)分布,在执行方式上属于同步执行,即按照“感知一行动”的模式并行进行信息处理和控制。以麻省理工的RABrooks所提出的行为分层的包容式体系结构(SubsumptionArchitecture) 和Arkin提出的基于MotorSc hema的结构为典型代表。其主要优点就是执行时间短、效率高、机动能力强。但是由于缺乏整体的管理,很难适应于各种情况。因此只适用于在沐淘环境下执行比较简单的任务。基于智能分布来分解基于智能分布的体系结构在人工智能上属于最新的分布式智能,在结构上体现为分散分布,在执行上属于协同执行,既可以单独完成各自的局部问题求解,又能通过协作求解单个或多个全局问题。以基于多智能体的体系结构为典型代表。这种体系结构的优点是既具有“智能分布”的特点,又有统一的协调机制。但是如何在各个智能体之间合理的划分和协调仍然需要大量的研究和实践。该体系结构在许多大型的智能信息处理系统上有着广泛的应用。除以上三类主要的体系结构之外,还有一些改进的混合式体系结构,如带反馈环节的行为分解模式、基于分布式智能的分层体系结构、基于功能分解的多智能体结构等等。但是从整体上来看,它们或是在功能模块的灵活性和扩展性上不足,或是没能很好的协调慎思式智能与反应式智能,或是各层次间的交流机制不够完善。控制体系仿生式体系结构的思想原理从本质上来讲,慎思式智能、反应式智能以及分布式智能,都是对生物控制逻辑和推理方式的一种借鉴和仿生,但由于客观条件的限制和需求目的的局限,它们都只是从某一个角度和方向对生物智能的一种片面的、局部的模仿。本文的仿生式体系结构就是以前述的生物控制逻辑和行为推理为基础,充分借鉴基于慎思式智能、反应式智能和分布式智能等三种体系结构思想的优点与不足之处,针对机器人特别是未知环境下工作的移动机器人在控制体系结构方面所存在的缺点和问题,提出一种具有适应行为与进化能力的新的控制思想与理念。借鉴分布式智能的思想,在控制体系结构中引人社会式行为控制层;借鉴生物的自适应性思想,在控制体系结构中实现本代内的由慎思式行为层到反射式行为层的学习;借鉴生物的自进化性思想,在控制体系结构中实现多代间的由反射式行为层向本能式行为层的进化(或退化)。所以,仿生式体系结构共有四个行为控制层组成,即本能式行为控制层、反射式行为控制层、慎思式行为控制层和社会式行为控制层,它们并行接收来自感知层的外部和内部信息,各自作出逻辑判断和反应,发出控制信息到末端执行层,通过竞争和协调来调节自身并适应外部环境,从而按照目标完成工作任务。

扫地机器人文献综述

能扫地机器人的外文我肯定好大

智能扫地机器人我能写你在呢么看

啊,可以说一名扫地机器人的形状是圆圆的,有多高,还有两个刷子,然后它的作用是什么?他是怎样安装的

扫地,拖地,喽。。你是要写论文还是要买?我家现在在用一个科沃斯的,反正常扫常新,现在自己不扫地了,还是很有用的。

  • 索引序列
  • 机器人文献综述
  • 机器人英文文献综述
  • 工业机器人文献综述
  • 仿生机器人文献综述
  • 扫地机器人文献综述
  • 返回顶部