可以使用卡方检验,卡方检验用于分析定类数据与定类数据之间的关系情况。
首先判断p 值是否呈现出显著性,如果呈现出显著性,则说明数据具有显著性差异,具体差异可通过选择百分比进行对比判断。
卡方检验是研究实际观测值与理论值之间的偏离程度,实际观测值与理论值之间的偏离程度决定卡方值的大小,卡方值越大,偏差越大;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明实际观测值与理论值完全符合。
SPSSAU操作如下:
结果如下:
可以得到卡方值与p值。
卡方检验用于检验两个变量之间的相关性。在进行卡方检验时,需要计算卡方值和p值。手算卡方检验的p值:1、计算卡方值:根据实际观测值和期望值,可以计算出卡方值,公式如下:卡方值=∑(观测值-期望值)2/期望值,2、计算自由度:自由度的计算公式为:自由度=(行数-1)*(列数-1),其中行数和列数分别表示变量的类别数。3、查找卡方分布表:根据自由度和显著性水平查找卡方分布表,得到对应的临界值。4、计算p值:根据卡方分布的对称性,可以得到双侧p值。计算p值需要用到积分函数或计算机软件,因此可以使用现成的卡方检验计算器或Excel的函数进行计算。
1打开word文档,在文档中假设输入一个X。2把光标定在x的前面,选择插入-符号。3在符号中选择其他符号,会出现字符对话框。4在出现的符号对话框中,字体选择symbol,代码输入96,然后选中插入,最后关闭即可。5完成后发现x上面出现了平均值符号,注意光标一定是要定在数字前面的哦!“^p”替换使用的通配符之一,输入时,切换至英文输入法(半角),第一个“^”是键盘上方横向数字键的“6”,按着shift不放,再按下这个“6”即可,接着再输入一个"p",即完成了“^p”的输入。
P值即为拒绝域的面积或概率。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
扩展资料:
用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
P值是当 时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
2、右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
3、双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。
p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
参考资料:百度百科—P值
P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。p值的计算公式:=2[1-φ(z0)]当被测假设h1为p不等于p0时;=1-φ(z0)当被测假设h1为p大于p0时;=φ(z0)当被测假设h1为p小于p0时;其中,φ(z0)要查表得到。z0=(x-n*p0)/(根号下(np0(1-p0)))最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。注意,这里p0是那个缺少的假设满意度,而不是要求的p值。没有p0就形不成假设检验,也就不存在p值统计学上规定的p值意义:p值碰巧的概率对无效假设统计意义p>碰巧出现的可能性大于5%不能否定无效假设两组差别无显著意义p<碰巧出现的可能性小于5%可以否定无效假设两组差别有显著意义p<碰巧出现的可能性小于1%可以否定无效假设两者差别有非常显著意义
放到spss中,定义两个变量,第一个变量叫做:group,用1代表实验组,用2代表对照组,每个组两个数字;第二个变量叫分娩方式,分别用1、2、3代表阴道分娩、阴道助产和剖宫产。然后用描述性统计方法中的交叉列联表计算就ok了!希望对你有帮助!
P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。
P值即为拒绝域的面积或概率。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
扩展资料:
用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
P值是当 时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
2、右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
3、双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。
p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
参考资料:百度百科—P值
放到spss中,定义两个变量,第一个变量叫做:group,用1代表实验组,用2代表对照组,每个组两个数字;第二个变量叫分娩方式,分别用1、2、3代表阴道分娩、阴道助产和剖宫产。然后用描述性统计方法中的交叉列联表计算就ok了!希望对你有帮助!
P值即为拒绝域的面积或概率。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
扩展资料:
用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
P值是当 时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
2、右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
3、双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。
p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
参考资料:百度百科—P值
关于你提的这个问题,我要很庄重的告诉你,我不知道哦,哈哈……
卡方检验的使用范围和优缺点与t检验有3点不同,具体介绍如下:
一、两者的使用范的使用范围不同:
1、卡方检验的使用范围:在分类资料统计推断中进行应用。包括两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
2、t检验的使用范围:主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。
二、两者的优缺点不同:
1、卡方检验的优缺点:可以方便简洁进行检验。但是,原理较为复杂
2、t检验的优缺点:只能够比较两个平均数的差异是否显著。
三、两者的原理不同:
1、卡方检验的原理:卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全符合。
2、t检验的原理:单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数得离差统计量呈t分布。
参考资料来源:百度百科-卡方检验
参考资料来源:百度百科-t检验
1、卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
2、T检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
扩展资料
注意的问题:
1、做假设检验之前,应注意资料本身是否有可比性。
2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。
3、根据资料类型和特点选用正确的假设检验方法。
4、根据专业及经验确定是选用单侧检验还是双侧检验。
5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大。
当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。
6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。
7、报告结论时是应注意说明所用的统计量,检验的单双侧及P值的确切范围。
参考资料来源:百度百科-卡方检验
参考资料来源:百度百科-t检验
参考资料来源:百度百科-假设检验
F=处理所致变异+随机误差变异/随机误差变异=组间均方/组间均方卡方=(ad-bc)²n/(a+b)(c+d)(a+c)(b+d)(适合四格表)T值好多符号打不出来,抱歉~