首页 > 职称论文知识库 > 发表宇宙理论文章

发表宇宙理论文章

发布时间:

发表宇宙理论文章

一位著名的科学家(据说是贝特郎·罗素)曾经作过一次关于天文学方面的讲演。他描述了地球如何绕着太阳运动,以及太阳又是如何绕着我们称之为星系的巨大的恒星群的中心转动。演讲结束之时,一位坐在房间后排的矮个老妇人站起来说道:“你说的这些都是废话。这个世界实际上是驮在一只大乌龟的背上的一块平板。”这位科学家很有教养地微笑着答道:“那么这只乌龟是站在什么上面的呢?”“你很聪明,年轻人,的确很聪明,”老妇人说,“不过,这是一只驮着一只一直驮下去的乌龟群啊!”大部分人会觉得,把我们的宇宙喻为一个无限的乌龟塔相当荒谬,可是为什么我们自以为知道得更多一些呢?我们对宇宙了解了多少?而我们又是怎样才知道的呢?宇宙从何而来,又将向何处去?宇宙有开端吗?如果有的话,在这开端之前发生了什么?时间的本质是什么?它会有一个终结吗?在物理学上的一些最新突破,使一部分奇妙的新技术得以实现,从而对于回答这些长期以来悬而未决问题中的某些问题有所启发。也许有一天这些答案会像我们认为地球绕着太阳运动那样显而易见——当然也可能像乌龟塔那般荒唐可笑。不管怎样,唯有让时间来判断了。早在公元前340年, 希腊哲学家亚里士多德在他的《论天》一书中,就已经能够对于地球是一个圆球而不是一块平板这一论点提出两个很好的论据。第一,他认为月食是由于地球运行到太阳与月亮之间而造成的。地球在月亮上的影子总是圆的,这只有在地球本身为球形的前提下才成立。如果地球是一块平坦的圆盘,除非月食总是发生在太阳正好位于这个圆盘中心之下的时候,否则地球的影子就会被拉长而成为椭圆。第二,希腊人从旅行中知道,在越往南的地区看星空,北极星则显得越靠近地平线。(因为北极星位于北极的正上方,所以它出现在处于北极的观察者的头顶上,而对于赤道上的观察者,北极星显得刚好在地平线上。)根据北极星在埃及和在希腊呈现出来的位置的差别, 亚里士多德甚至估计地球大圆长度为4000000斯特迪亚。 现在不能准确地知道,一个斯特迪亚的长度究竟是多少,但也许是200码左右,这样就使得亚里士多德的估计为现在所接受数值的两倍。希腊人甚至为地球是球形提供了第三个论据,否则何以从地平线外驶来的船总是先露出船帆,然后才是船身?亚里士多德认为地球是不动的,太阳、月亮、行星和恒星都以圆周为轨道围绕着它转动。他相信这些,是由于神秘的原因,他感到地球是宇宙的中心,而且圆周运动最为完美。在公元后两世纪,这个思想被托勒密精制成一个完整的宇宙学模型。地球处于正中心,包围着它的是八个天球,这八个天球分别负载着月亮、太阳、恒星和五个当时已知的行星: 水星、金星、火星、木星和土星(图1.1)。这些行星被认为是沿着附在相应天球上的更小的圆周运动,以说明它们在天空中被观察到的相当复杂的轨迹。最外层的天球被镶上固定的恒星,它们总是停在不变的相对位置,但是总体绕着天空旋转。最后一层天球之外为何物一直不清楚,但有一点是肯定的,它不是人类所能观测到的宇宙的部分。图1.1 从最里面往最外面顺序为月亮球、 水星球、金星球、太阳球、火星球、木星球、土星球和固定恒星球。最中心为地球。托勒密模型为预言天体在天空的位置提供了相当精密的系统。但为了正确地预言这些位置,托勒密必须假定月亮轨道有时离地球比其他时候要近一倍,这意味着月亮有时看起来要比其他时候大一倍。托勒密承认这个瑕疵,尽管如此,他的模型虽然不是普遍地、却是广泛地被接受。它被基督教接纳为与《圣经》相一致的宇宙图象。这是因为它具有巨大的优点,即在固定恒星天球之外为天堂和地狱留下了很多地方。然而,1514年一位名叫尼古拉·哥白尼的教士提出了一个更简单的模型。(起初,可能由于害怕教会对异端的迫害,哥白尼只能将他的模型匿名地流传。)他的观念是,太阳是静止地位于中心,而地球和其他行星绕着太阳作圆周运动。将近一个世纪以后,他的观念才被认真地接受。后来,两位天文学家——德国的约翰斯·开普勒和意大利的伽利雷·伽利略开始公开支持哥白尼的理论,尽管它所预言的轨道还不能完全与观测相符合。直到1609年,亚里士多德——托勒密的理论才宣告死亡。那一年,伽利略用刚发明的望远镜来观测夜空。当他观测木星时,发现有几个小卫星或月亮绕着它转动。这表明不象亚里士多德和托勒密所设想的,并不是所有的东西都必须直接围绕着地球转。(当然,仍然可能相信地球是静止地处于宇宙的中心,而木星的卫星沿着一种极其复杂的轨道绕地球运动,表观上看来它们是绕着木星转动。然而哥白尼理论是简单得多了。)同时,开普勒修正了哥白尼理论,认为行星不是沿圆周而是沿椭圆(椭圆是被拉长的圆)运动,从而使预言最终和观察相互一致了。就开普勒而言,椭圆轨道仅仅是想当然的,并且是相当讨厌的假设,因为椭圆明显地不如圆那么完美。虽然他几乎是偶然地发现椭圆轨道能很好地和观测相符合,但却不能把它和他的行星绕太阳运动是由于磁力引起的另一思想相互调和起来。对这一切提供解释是晚得多的事,那是由于1687年伊萨克·牛顿爵士出版了他的《数学的自然哲学原理》,这部也许是有史以来物理科学上最重要的单独的著作。在这本书中,牛顿不但提出物体如何在空间和时间中运动的理论,并且发展了为分析这些运动所需的复杂的数学。此外,牛顿提出了万有引力定律,根据这定律,宇宙中的任一物体都被另外物体所吸引,物体质量越大,相互距离越近,则相互之间的吸引力越大。这也就是使物体落到地面上的力。(由于一个苹果落到牛顿的头上而使他得到灵感的故事,几乎肯定是不足凭信的。所有牛顿自己说过的只是,当他陷入沉思之时,一颗苹果的落下使他得到了万有引力的思想。)牛顿继而指出,根据他的定律,引力使月亮沿着椭圆轨道绕着地球运行,而地球和其他行星沿着椭圆轨道绕着太阳公转。哥白尼的模型摆脱了托勒密的天球,以及与其相关的宇宙存在着自然边界的观念。“固定恒星”除了由于地球绕着自身的轴自转引起的穿越天空的转动外,不改变它们的位置,很自然会使人设想到固定恒星是和我们的太阳类似的物体,只是比太阳离开我们远得多了。按照他的引力理论,牛顿意识到恒星应该相互吸引,看来它们不能保持基本上不动。那么它们会一起落到某处去吗?在1691年写给当时另一位最重要的思想家里查德·本特里的一封信中,他论证道,如果只有有限颗恒星分布在一个有限的空间区域里,这确实是会发生的。但是另一方面,他推断如果存在无限多颗恒星,多少均匀地分布于无限的空间,这种情形就不会发生,因为这时不存在任何一个它们落去的中心点。当人们议论到无穷时,这种论证是你会遭遇到的一种陷阱。在一个无限的宇宙,每一点都可以认为是中心,因为在它的每一边都有无限颗恒星。正确的方法是很久以后才被意识到的,即是先考虑有限的情形,这时所有恒星都相互落到一起,然后在这个区域以外,大体均匀地加上更多的恒星,看情况会如何改变。按照牛顿定律,这额外的恒星平均地讲对原先的那些根本没有什么影响,所以这些恒星还是同样快地落到一起。我们愿意加上多少恒星就可以加上多少,但是它们仍然总是坍缩在一起。现在我们知道,由于引力总是吸引的,不可能存在一个无限的静态的宇宙模型。在20世纪之前从未有人暗示过,宇宙是在膨胀或是在收缩,这有趣地反映了当时的思维风气。一般认为,宇宙或是以一种不变的状态已存在了无限长的时间,或以多多少少正如我们今天所看的样子被创生于有限久的过去。其部分的原因可能是,人们倾向于相信永恒的真理,也由于虽然人会生老病死,但宇宙必须是不朽的、不变的这种观念才能给人以安慰。甚至那些意识到牛顿的引力理论导致宇宙不可能静止的人,也没有想到提出宇宙可能是在膨胀。相反的,他们试图修正理论,使引力在非常大距离时成为斥力。这不会对行星运动的预言有重大的影响,然而却允许无限颗恒星的分布保持平衡——邻近恒星之间的吸引力被远隔恒星之间的斥力所平衡。然而,现在我们知道,这样的平衡是不稳定的:如果某一区域内的恒星稍微互相靠近一些,引力就增强,并超过斥力的作用,这样这些恒星就会继续落到一起。反之,如果某一区域内的恒星稍微互相远离一些,斥力就起主导作用,并驱使它们离得更开。另一个反对无限静止宇宙的异见通常是归功于德国哲学家亨利希·奥勃斯,1823年他发表了这个理论。事实上,牛顿的同时代的一些人已经提出过这个问题。甚至奥勃斯的文章也不是貌似有理地反驳这模型的第一篇。不管怎么说,这是第一篇被广泛注意的文章。这无限静止模型的困难,在于几乎每一道视线必须终结于某一恒星的表面。这样,人们可以预料,整个天空甚至在夜晚都会像太阳那么明亮。奥勃斯反驳说,远处恒星的光线由于被它所穿过的物质吸收所减弱。然而如果真是如此,这相干的物质将会最终被加热到发出和恒星一样强的光为止。唯一的能避免整个天空像太阳那么亮的结论的方法是,假定恒星并不是永远那么亮,而是在有限久的过去才开始发光。这种情况下,吸光物质还没加热,或者远处恒星的光线尚未到达我们这儿。这使我们面临着是什么首次使恒星发光的问题。当然,宇宙开端的问题在这之前很久就被讨论过。根据一些早先的宇宙论和犹太人/基督教/穆斯林传统,宇宙开端于有限的、并且不是非常远的过去的某一时刻。对这样一个开端,有一种议论是感到必须有“第一原因”来解释宇宙的存在。(在宇宙中,你总可以将一个事件解释为由于另一个更早的事件所引起的,但是宇宙本身的存在只有当存在某个开端时才能被解释。)另一种论证是圣·奥古斯丁在他的《上帝之城》的著作中提出的。他指出,文明在进步,我们将记住创造这些业绩和发展技术的人们。这样人,也许宇宙,不可能已经存在了太长的时间。圣·奥古斯丁根据《创世纪》一书,接受公元前5000年作为宇宙的被创生的时间。(有趣的是, 这和上一次的冰河时间的结束,大约公元前10000年相距不远。考古学家告诉我们,文明实际上是从那时开始的。)另一方面,亚里士多德和大多数其他希腊哲学家不喜欢创生的思想,因为它带有太多的神学干涉的味道。所以他们相信,人类及其周围的世界已经并且将继续永远存在。古代的人们已经考虑到上述的文明进步的论点,用周期性洪水或其他灾难的重复出现,使人类回到文明的开初,来回答上面的话难。1781年,哲学家伊曼努尔·康德发表了里程碑般的(也是非常模糊的)著作——《纯粹理性批判》,在这本书中,他深入地考察了关于宇宙在时间上是否有开端、空间上是否有极限的问题。他称这些问题为纯粹理性的二律背反(也就是矛盾)。因为他感到存在同样令人信服的论据,来证明宇宙有开端的正命题,以及宇宙已经存在无限久的反命题。他对正命题的论证是:如果宇宙没有一个开端,则任何事件之前必有无限的时间。他认为这是荒谬的。他对反命题的论证是:如果宇宙有一开端,在它之前必有无限的时间,为何宇宙必须在某一特定的时刻开始呢?事实上,他对正命题和反命题用了同样的论证。它们都是基于他的隐含的假设,即不管宇宙是否存在了无限久,时间均可无限地倒溯回去。我们将会看到,在宇宙开端之前时间概念是没有意义的。这一点是圣·奥古斯丁首先指出的。当他被问及:上帝在创造宇宙之前做什么?奥古斯丁没有这样地回答:他正为问这类问题的人准备地狱。而是说:时间是上帝所创造的宇宙的一个性质,在宇宙开端之前不存在。当大部分人相信一个本质上静止不变的宇宙时,关于它有无开端的问题,实在是一个形而上学或神学的问题。按照宇宙存在无限久的理论,或者按照宇宙在某一个有限时刻,以给人的印象似乎是已经存在了无限久的样子启动的理论,我们可以同样很好地解释所观察到的事实。但在1929年,埃德温·哈勃作出了一个具有里程碑意义的观测,即是不管你往那个方向看,远处的星系正急速地远离我们而去。换言之,宇宙正在膨胀。这意味着,在早先星体相互之间更加靠近。事实上,似乎在大约100亿至200亿年之前的某一时刻,它们刚好在同一地方,所以那时候宇宙的密度无限大。这个发现最终将宇宙开端的问题带进了科学的王国。哈勃的发现暗示存在一个叫做大爆炸的时刻,当时宇宙的尺度无穷小,而且无限紧密。在这种条件下,所有科学定律并因此所有预见将来的能力都失效了。如果在此时刻之前有过些事件,它们将不可能影响现在所发生的一切。所以我们可以不理它们,因为它们并没有可观测的后果。由于更早的时间根本没有定义,所以在这个意义上人们可以说,时间在大爆炸时有一开端。必须强调的是,这个时间的开端是和早先考虑的非常不同。在一个不变的宇宙中,时间的端点必须由宇宙之外的存在物所赋予;宇宙的开端并没有物理的必要性。人们可以想像上帝在过去的任何时刻创造宇宙。另一方面,如果宇宙在膨胀,何以宇宙有一个开端似乎就有了物理的原因。人们仍然可以想像,上帝是在大爆炸的瞬间创造宇宙,或者甚至在更晚的时刻,以便它看起来就像发生过大爆炸似的方式创造,但是设想在大爆炸之前创造宇宙是没有意义的。大爆炸模型并没有排斥造物主,只不过对他何时从事这工作加上时间限制而已!为了谈论宇宙的性质和讨论诸如它是否存在开端或终结的问题,你必须清楚什么是科学理论。我将采用头脑简单的观点,即理论只不过是宇宙或它的受限制的一部分的模型,一些联结这模型和我们所观察的量的规则。它只存在于我们的头脑中,(不管在任何意义上)不再具有任何其他的实在性。如果它满足以下两个要求,就算是好的理论:它必须在只包含一些任意元素的一个模型的基础上,准确地描述大批的观测,并对未来观测的结果作出确定的预言。例如,亚里士多德关于任何东西是由四元素,土、空气、火和水组成的理论是足够简单的了,但它没有做出任何确定的预言。另一方面,牛顿的引力理论是基于甚至更为简单的模型,在此模型中两物体之间的相互吸引力和它们称之为质量的量成正比,并和它们之间的距离的平方成反比。然而,它以很高的精确性预言了太阳、月亮和行星的运动。在它只是假设的意义上来讲,任何物理理论总是临时性的:你永远不可能将它证明。不管多少回实验的结果和某一理论相一致,你永远不可能断定下一次结果不会和它矛盾。另一方面,哪怕你只要找到一个和理论预言不一致的观测事实,即可证伪之。正如科学哲学家卡尔·波帕所强调的,一个好的理论的特征是,它能给出许多原则上可以被观测所否定或证伪的预言。每回观察到与这预言相符的新的实验,则这理论就幸存,并且增加了我们对它的可信度;然而若有一个新的观测与之不符,则我们只得抛弃或修正这理论。至少被认为这迟早总会发生的,问题在于人们有无才干去实现这样的观测。实际上经常发生的是,所设计的新理论确实是原先理论的推广。例如,对水星的非常精确的观测揭露了它的运动和牛顿理论预言之间的很小差异。爱因斯坦的广义相对论所预言的运动和牛顿理论略有不同。爱因斯坦的预言和观测相符,而牛顿的预言与观测不相符,这一事实是这个新理论的一个关键证据。然而我们在大部分实际情况下仍用牛顿理论,因为在我们通常处理的情形下,两者差别非常小。(牛顿理论的另一个巨大的优点在于,它比爱因斯坦理论容易处理得多!)科学的终极目的在于提供一个简单的理论去描述整个宇宙。然而,大部分科学家遵循的方法是将这问题分成两部分。首先,是一些告诉我们宇宙如何随时间变化的定律;(如果我们知道在任一时刻宇宙是什么样子的,则这些定律即能告诉我们以后的任一时刻宇宙是什么样子的。)第二,关于宇宙初始状态的问题。有些人认为科学只应过问第一部分,他们认为初始状态的问题应是形而上学或宗教的范畴。他们会说,全能的上帝可以随心所欲地启动这个宇宙。也许是这样。但是,倘若那样,他也可以使宇宙以完全任意的方式演化。可是,看起来他选择宇宙以一种非常规则的、按照一定规律的方式演化。所以,看来可以同样合理地假定,也存在着制约初始状态的定律。毕全功于一役地设计一种能描述整个宇宙的理论,看来是非常困难的。反之,我们是将这问题分成许多小块,并发明许多部分理论。每一部分理论描述和预言一定有限范围的观测,同时忽略其他量的效应或用简单的一组数来代表之。可能这方法是全错的。如果宇宙中的每一件东西都以非常基本的方式依赖于其他的任何一件东西,很可能不能用隔离法研究问题的部分去逼近其完备的答案。尽管如此,这肯定是我们在过去取得进展所用的方法。牛顿引力理论又是一个经典的例子,它告诉我们两个物体之间的引力只决定于与每个物体相关的一个数——它的质量;而与物体由何物组成无关。这样,人们不需要太阳和行星结构和成份的理论就可以计算它们的轨道。今天科学家按照两个基本的部分理论——广义相对论和量子力学来描述宇宙。它们是本世纪上半叶的伟大的智慧成就。广义相对论是描述引力和宇宙的大尺度结构, 也就是从只有几英哩直到大至1亿亿亿(1后面跟24个0)英哩,即可观测到的宇宙范围的尺度的结构。另一方面,量子力学处理极小尺度的现象,例如万亿分之一英寸。然而,可惜的是,这两个理论不是互相协调的——它们不可能都对。当代物理学的一个主要的努力,以及这本书的主题,即是寻求一个能将其合并在一起的理论——量子引力论。我们还没有这样的理论,要获得这个理论,我们可能还有相当长的路要走,然而我们已经知道了这个理论所应具备的许多性质。在以下几章,人们将会看到,我们已经知道了相当多的量子引力论所应有的预言。现在,如果你相信宇宙不是任意的,而是由确定的定律所制约的,你最终必须将这些部分理论合并成一套能描述宇宙中任何东西的完整统一理论。然而,在寻求这样的完整统一理论中有一个基本的自相矛盾。在前面概括的关于科学理论的思想中,假定我们是有理性的生物,既可以随意自由地观测宇宙,又可以从观察中得出逻辑推论。在这样的方案里可以合理地假设,我们可以越来越接近找到制约我们宇宙的定律。然而,如果真有一套完整的统一理论,则它也将决定我们的行动。这样,理论本身将决定了我们对之探索的结果!那么为什么它必须确定我们从证据得到正确的结论?它不也同样可以确定我们引出错误的结论吗?或者根本没有结论?对于这个问题,我所能给出的回答是基于达尔文的自然选择原理。这思想是说,在任何自繁殖的群体中,存在有不同个体在遗传物质和发育上的变异。这些差异表明,某些个体比其他个体对周围的世界更能引出正确的结论,并去适应它。这些个体更可能存活、繁殖,因此它们的行为和思维的模式将越来越起主导作用。这一点在过去肯定是真的,即我们称之为智慧和科学发现的东西给我们带来了存活的好处。这种情况是否仍会如此不是很清楚:我们的科学发现也可以将我们的一切都毁灭。即使不是这样,一个完整的统一理论对于我们存活的机会不会有很大影响。然而,假定宇宙已经以规则的方式演化至今,我们可以预期,自然选择赋予我们的推理能力在探索完整统一理论时仍然有效,并因此不会导致我们得到错误的结论。因为除了最极端的情况外,我们已有了对所有一切都足够给出精确的预言的部分理论,看来很难以现实的理由为探索宇宙的终极理论辩护。(值得指出,虽然可用类似的论点来攻击相对论和量子力学,但这些理论已给我们带来了核能和微电子学的革命!)所以,一套完整的统一理论的发现可能对我们种族的存活无助,甚至也不会影响我们的生活方式。然而自从文明开始,人们即不甘心于将事件看作互不相关而不可理解的。他们渴求理解世界的根本秩序。今天我们仍然渴望知道,我们为何在此?我们从何而来?人类求知的最深切的意愿足以为我们所从事的不断的探索提供正当的理由。而我们的目标恰恰正是对于我们生存其中的宇宙作完整的描述。

你是需要找这方面论文还是需要写呢?

大爆炸宇宙学现代宇宙学中最有影响的一种学说。与其它宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密 到稀地演化。这一从冷到热从密到稀的过程如同一次规模很大的爆发。根据 大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在 100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有 中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整 个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子 开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等 元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度 后,早期形成化学元素的过程结束。宇宙间的物质主要是质子、电子、光子 和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气 态物质,气体逐渐凝聚成气云,在进一步形成各种各样的恒星体系,成为我 们今天看到的宇宙。大爆炸模型能统一说明以下几个观测事实: 1大爆炸理 论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温 度至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明 了这一点。 2观测到河外天体有系统性的谱线红移,而且红移与距离大体成 正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 3在各种 不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以 说明为什么又如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效 率也很高,则可以说明这一事实。 4根据宇宙膨胀速度以及氦丰度等,可以 具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言 今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上 探测到具有热辐射谱的微波背景辐射,温度大约为3K。这一结果无论在定 性上或者定量上都与大爆炸理论的预言相符。但是,在星系的起源和各向同 性分布等方面,大爆炸宇宙学还存在一些未解决的困难问题。

一位著名的科学家(据说是贝特郎·罗素)曾经作过一次关于天文学方面的讲演。

他描述了地球如何绕着太阳运动,以及太阳又是如何绕着我们称之为星系的巨大的恒星

群的中心转动。演讲结束之时,一位坐在房间后排的矮个老妇人站起来说道:“你说的

这些都是废话。这个世界实际上是驮在一只大乌龟的背上的一块平板。”这位科学家很

有教养地微笑着答道:“那么这只乌龟是站在什么上面的呢?”“你很聪明,年轻人,

的确很聪明,”老妇人说,“不过,这是一只驮着一只一直驮下去的乌龟群啊!”

大部分人会觉得,把我们的宇宙喻为一个无限的乌龟塔相当荒谬,可是为什么我们

自以为知道得更多一些呢?我们对宇宙了解了多少?而我们又是怎样才知道的呢?宇宙

从何而来,又将向何处去?宇宙有开端吗?如果有的话,在这开端之前发生了什么?时

间的本质是什么?它会有一个终结吗?在物理学上的一些最新突破,使一部分奇妙的新

技术得以实现,从而对于回答这些长期以来悬而未决问题中的某些问题有所启发。也许

有一天这些答案会像我们认为地球绕着太阳运动那样显而易见——当然也可能像乌龟塔

那般荒唐可笑。不管怎样,唯有让时间来判断了。

早在公元前340年,希腊哲学家亚里士多德在他的《论天》一书中,就已经能够对于

地球是一个圆球而不是一块平板这一论点提出两个很好的论据。第一,他认为月食是由

于地球运行到太阳与月亮之间而造成的。地球在月亮上的影子总是圆的,这只有在地球

本身为球形的前提下才成立。如果地球是一块平坦的圆盘,除非月食总是发生在太阳正

好位于这个圆盘中心之下的时候,否则地球的影子就会被拉长而成为椭圆。第二,希腊

人从旅行中知道,在越往南的地区看星空,北极星则显得越靠近地平线。(因为北极星

位于北极的正上方,所以它出现在处于北极的观察者的头顶上,而对于赤道上的观察者,

北极星显得刚好在地平线上。)根据北极星在埃及和在希腊呈现出来的位置的差别,亚

里士多德甚至估计地球大圆长度为 400斯特迪亚。现在不能准确地知道,一个斯特迪

亚的长度究竟是多少,但也许是200码左右,这样就使得亚里士多德的估计为现在所接受

数值的两倍。希腊人甚至为地球是球形提供了第三个论据,否则何以从地平线外驶来的

船总是先露出船帆,然后才是船身?

亚里士多德认为地球是不动的,太阳、月亮、行星和恒星都以圆周为轨道围绕着它

转动。他相信这些,是由于神秘的原因,他感到地球是宇宙的中心,而且圆周运动最为

完美。在公元后两世纪,这个思想被托勒密精制成一个完整的宇宙学模型。地球处于正

中心,包围着它的是八个天球,这八个天球分别负载着月亮、太阳、恒星和五个当时已

知的行星:水星、金星、火星、木星和土星(图1.1)。这些行星被认为是沿着附在相应

天球上的更小的圆周运动,以说明它们在天空中被观察到的相当复杂的轨迹。最外层的

天球被镶上固定的恒星,它们总是停在不变的相对位置,但是总体绕着天空旋转。最后

一层天球之外为何物一直不清楚,但有一点是肯定的,它不是人类所能观测到的宇宙的

部分。

图1.1从最里面往最外面顺序为月亮球、水星球、金星球、太阳球、火星球、木星球、

土星球和固定恒星球。最中心为地球。

托勒密模型为预言天体在天空的位置提供了相当精密的系统。但为了正确地预言这

些位置,托勒密必须假定月亮轨道有时离地球比其他时候要近一倍,这意味着月亮有时

看起来要比其他时候大一倍。托勒密承认这个瑕疵,尽管如此,他的模型虽然不是普遍

地、却是广泛地被接受。它被基督教接纳为与《圣经》相一致的宇宙图象。这是因为它

具有巨大的优点,即在固定恒星天球之外为天堂和地狱留下了很多地方。

然而,1514年一位名叫尼古拉·哥白尼的教士提出了一个更简单的模型。(起初,

可能由于害怕教会对异端的迫害,哥白尼只能将他的模型匿名地流传。)他的观念是,

太阳是静止地位于中心,而地球和其他行星绕着太阳作圆周运动。将近一个世纪以后,

他的观念才被认真地接受。后来,两位天文学家——德国的约翰斯·开普勒和意大利的

伽利雷·伽利略开始公开支持哥白尼的理论,尽管它所预言的轨道还不能完全与观测相

符合。直到1609年,亚里士多德——托勒密的理论才宣告死亡。那一年,伽利略用刚发

明的望远镜来观测夜空。当他观测木星时,发现有几个小卫星或月亮绕着它转动。这表

明不象亚里士多德和托勒密所设想的,并不是所有的东西都必须直接围绕着地球转。

(当然,仍然可能相信地球是静止地处于宇宙的中心,而木星的卫星沿着一种极其复杂

的轨道绕地球运动,表观上看来它们是绕着木星转动。然而哥白尼理论是简单得多了。)

同时,开普勒修正了哥白尼理论,认为行星不是沿圆周而是沿椭圆(椭圆是被拉长的圆)

运动,从而使预言最终和观察相互一致了。

就开普勒而言,椭圆轨道仅仅是想当然的,并且是相当讨厌的假设,因为椭圆明显

地不如圆那么完美。虽然他几乎是偶然地发现椭圆轨道能很好地和观测相符合,但却不

能把它和他的行星绕太阳运动是由于磁力引起的另一思想相互调和起来。对这一切提供

解释是晚得多的事,那是由于1687年伊萨克·牛顿爵士出版了他的《数学的自然哲学原

理》,这部也许是有史以来物理科学上最重要的单独的著作。在这本书中,牛顿不但提

出物体如何在空间和时间中运动的理论,并且发展了为分析这些运动所需的复杂的数学。

此外,牛顿提出了万有引力定律,根据这定律,宇宙中的任一物体都被另外物体所吸引,

物体质量越大,相互距离越近,则相互之间的吸引力越大。这也就是使物体落到地面上

的力。(由于一个苹果落到牛顿的头上而使他得到灵感的故事,几乎肯定是不足凭信的。

所有牛顿自己说过的只是,当他陷入沉思之时,一颗苹果的落下使他得到了万有引力的

思想。)牛顿继而指出,根据他的定律,引力使月亮沿着椭圆轨道绕着地球运行,而地

球和其他行星沿着椭圆轨道绕着太阳公转。

哥白尼的模型摆脱了托勒密的天球,以及与其相关的宇宙存在着自然边界的观念。

“固定恒星”除了由于地球绕着自身的轴自转引起的穿越天空的转动外,不改变它们的

位置,很自然会使人设想到固定恒星是和我们的太阳类似的物体,只是比太阳离开我们

远得多了。

按照他的引力理论,牛顿意识到恒星应该相互吸引,看来它们不能保持基本上不动。

那么它们会一起落到某处去吗?在1691年写给当时另一位最重要的思想家里查德·本特

里的一封信中,他论证道,如果只有有限颗恒星分布在一个有限的空间区域里,这确实

是会发生的。但是另一方面,他推断如果存在无限多颗恒星,多少均匀地分布于无限的

空间,这种情形就不会发生,因为这时不存在任何一个它们落去的中心点。

当人们议论到无穷时,这种论证是你会遭遇到的一种陷阱。在一个无限的宇宙,每

一点都可以认为是中心,因为在它的每一边都有无限颗恒星。正确的方法是很久以后才

被意识到的,即是先考虑有限的情形,这时所有恒星都相互落到一起,然后在这个区域

以外,大体均匀地加上更多的恒星,看情况会如何改变。按照牛顿定律,这额外的恒星

平均地讲对原先的那些根本没有什么影响,所以这些恒星还是同样快地落到一起。我们

愿意加上多少恒星就可以加上多少,但是它们仍然总是坍缩在一起。现在我们知道,由

于引力总是吸引的,不可能存在一个无限的静态的宇宙模型。

在20世纪之前从未有人暗示过,宇宙是在膨胀或是在收缩,这有趣地反映了当时的

思维风气。一般认为,宇宙或是以一种不变的状态已存在了无限长的时间,或以多多少

少正如我们今天所看的样子被创生于有限久的过去。其部分的原因可能是,人们倾向于

相信永恒的真理,也由于虽然人会生老病死,但宇宙必须是不朽的、不变的这种观念才

能给人以安慰。

甚至那些意识到牛顿的引力理论导致宇宙不可能静止的人,也没有想到提出宇宙可

能是在膨胀。相反的,他们试图修正理论,使引力在非常大距离时成为斥力。这不会对

行星运动的预言有重大的影响,然而却允许无限颗恒星的分布保持平衡——邻近恒星之

间的吸引力被远隔恒星之间的斥力所平衡。然而,现在我们知道,这样的平衡是不稳定

的:如果某一区域内的恒星稍微互相靠近一些,引力就增强,并超过斥力的作用,这样

这些恒星就会继续落到一起。反之,如果某一区域内的恒星稍微互相远离一些,斥力就

起主导作用,并驱使它们离得更开。

另一个反对无限静止宇宙的异见通常是归功于德国哲学家亨利希·奥勃斯,1823年

他发表了这个理论。事实上,牛顿的同时代的一些人已经提出过这个问题。甚至奥勃斯

的文章也不是貌似有理地反驳这模型的第一篇。不管怎么说,这是第一篇被广泛注意的

文章。这无限静止模型的困难,在于几乎每一道视线必须终结于某一恒星的表面。这样,

人们可以预料,整个天空甚至在夜晚都会像太阳那么明亮。奥勃斯反驳说,远处恒星的

光线由于被它所穿过的物质吸收所减弱。然而如果真是如此,这相干的物质将会最终被

加热到发出和恒星一样强的光为止。唯一的能避免整个天空像太阳那么亮的结论的方法

是,假定恒星并不是永远那么亮,而是在有限久的过去才开始发光。这种情况下,吸光

物质还没加热,或者远处恒星的光线尚未到达我们这儿。这使我们面临着是什么首次使

恒星发光的问题。

当然,宇宙开端的问题在这之前很久就被讨论过。根据一些早先的宇宙论和犹太人

/基督教/穆斯林传统,宇宙开端于有限的、并且不是非常远的过去的某一时刻。对这

样一个开端,有一种议论是感到必须有“第一原因”来解释宇宙的存在。(在宇宙中,

你总可以将一个事件解释为由于另一个更早的事件所引起的,但是宇宙本身的存在只有

当存在某个开端时才能被解释。)另一种论证是圣·奥古斯丁在他的《上帝之城》的著

作中提出的。他指出,文明在进步,我们将记住创造这些业绩和发展技术的人们。这样

人,也许宇宙,不可能已经存在了太长的时间。圣·奥古斯丁根据《创世纪》一书,接

受公元前5000年作为宇宙的被创生的时间。(有趣的是,这和上一次的冰河时间的结束,

大约公元前1    年相距不远。考古学家告诉我们,文明实际上是从那时开始的。)

另一方面,亚里士多德和大多数其他希腊哲学家不喜欢创生的思想,因为它带有太

多的神学干涉的味道。所以他们相信,人类及其周围的世界已经并且将继续永远存在。

古代的人们已经考虑到上述的文明进步的论点,用周期性洪水或其他灾难的重复出现,

使人类回到文明的开初,来回答上面的话难。

1781年,哲学家伊曼努尔·康德发表了里程碑般的(也是非常模糊的)著作——

《纯粹理性批判》,在这本书中,他深入地考察了关于宇宙在时间上是否有开端、空间

上是否有极限的问题。他称这些问题为纯粹理性的二律背反(也就是矛盾)。因为他感

到存在同样令人信服的论据,来证明宇宙有开端的正命题,以及宇宙已经存在无限久的

反命题。他对正命题的论证是:如果宇宙没有一个开端,则任何事件之前必有无限的时

间。他认为这是荒谬的。他对反命题的论证是:如果宇宙有一开端,在它之前必有无限

的时间,为何宇宙必须在某一特定的时刻开始呢?事实上,他对正命题和反命题用了同

样的论证。它们都是基于他的隐含的假设,即不管宇宙是否存在了无限久,时间均可无

限地倒溯回去。我们将会看到,在宇宙开端之前时间概念是没有意义的。这一点是圣·

奥古斯丁首先指出的。当他被问及:上帝在创造宇宙之前做什么?奥古斯丁没有这样地

回答:他正为问这类问题的人准备地狱。而是说:时间是上帝所创造的宇宙的一个性质,

在宇宙开端之前不存在。

当大部分人相信一个本质上静止不变的宇宙时,关于它有无开端的问题,实在是一

个形而上学或神学的问题。按照宇宙存在无限久的理论,或者按照宇宙在某一个有限时

刻,以给人的印象似乎是已经存在了无限久的样子启动的理论,我们可以同样很好地解

释所观察到的事实。但在1929年,埃德温·哈勃作出了一个具有里程碑意义的观测,即

是不管你往那个方向看,远处的星系正急速地远离我们而去。换言之,宇宙正在膨胀。

这意味着,在早先星体相互之间更加靠近。事实上,似乎在大约100亿至200亿年之前的

某一时刻,它们刚好在同一地方,所以那时候宇宙的密度无限大。这个发现最终将宇宙

开端的问题带进了科学的王国。

哈勃的发现暗示存在一个叫做大爆炸的时刻,当时宇宙的尺度无穷小,而且无限紧

密。在这种条件下,所有科学定律并因此所有预见将来的能力都失效了。如果在此时刻

之前有过些事件,它们将不可能影响现在所发生的一切。所以我们可以不理它们,因为

它们并没有可观测的后果。由于更早的时间根本没有定义,所以在这个意义上人们可以

说,时间在大爆炸时有一开端。必须强调的是,这个时间的开端是和早先考虑的非常不

同。在一个不变的宇宙中,时间的端点必须由宇宙之外的存在物所赋予;宇宙的开端并

没有物理的必要性。人们可以想像上帝在过去的任何时刻创造宇宙。另一方面,如果宇

宙在膨胀,何以宇宙有一个开端似乎就有了物理的原因。人们仍然可以想像,上帝是在

大爆炸的瞬间创造宇宙,或者甚至在更晚的时刻,以便它看起来就像发生过大爆炸似的

方式创造,但是设想在大爆炸之前创造宇宙是没有意义的。大爆炸模型并没有排斥造物

主,只不过对他何时从事这工作加上时间限制而已!

为了谈论宇宙的性质和讨论诸如它是否存在开端或终结的问题,你必须清楚什么是

科学理论。我将采用头脑简单的观点,即理论只不过是宇宙或它的受限制的一部分的模

型,一些联结这模型和我们所观察的量的规则。它只存在于我们的头脑中,(不管在任

何意义上)不再具有任何其他的实在性。如果它满足以下两个要求,就算是好的理论:

它必须在只包含一些任意元素的一个模型的基础上,准确地描述大批的观测,并对未来

观测的结果作出确定的预言。例如,亚里士多德关于任何东西是由四元素,土、空气、

火和水组成的理论是足够简单的了,但它没有做出任何确定的预言。另一方面,牛顿的

引力理论是基于甚至更为简单的模型,在此模型中两物体之间的相互吸引力和它们称之

为质量的量成正比,并和它们之间的距离的平方成反比。然而,它以很高的精确性预言

了太阳、月亮和行星的运动。

在它只是假设的意义上来讲,任何物理理论总是临时性的:你永远不可能将它证明。

不管多少回实验的结果和某一理论相一致,你永远不可能断定下一次结果不会和它矛盾。

另一方面,哪怕你只要找到一个和理论预言不一致的观测事实,即可证伪之。正如科学

哲学家卡尔·波帕所强调的,一个好的理论的特征是,它能给出许多原则上可以被观测

所否定或证伪的预言。每回观察到与这预言相符的新的实验,则这理论就幸存,并且增

加了我们对它的可信度;然而若有一个新的观测与之不符,则我们只得抛弃或修正这理

论。至少被认为这迟早总会发生的,问题在于人们有无才干去实现这样的观测。

实际上经常发生的是,所设计的新理论确实是原先理论的推广。例如,对水星的非

常精确的观测揭露了它的运动和牛顿理论预言之间的很小差异。爱因斯坦的广义相对论

所预言的运动和牛顿理论略有不同。爱因斯坦的预言和观测相符,而牛顿的预言与观测

不相符,这一事实是这个新理论的一个关键证据。然而我们在大部分实际情况下仍用牛

顿理论,因为在我们通常处理的情形下,两者差别非常小。(牛顿理论的另一个巨大的

优点在于,它比爱因斯坦理论容易处理得多!)

科学的终极目的在于提供一个简单的理论去描述整个宇宙。然而,大部分科学家遵

循的方法是将这问题分成两部分。首先,是一些告诉我们宇宙如何随时间变化的定律;

(如果我们知道在任一时刻宇宙是什么样子的,则这些定律即能告诉我们以后的任一时

刻宇宙是什么样子的。)第二,关于宇宙初始状态的问题。有些人认为科学只应过问第

一部分,他们认为初始状态的问题应是形而上学或宗教的范畴。他们会说,全能的上帝

可以随心所欲地启动这个宇宙。也许是这样。但是,倘若那样,他也可以使宇宙以完全

任意的方式演化。可是,看起来他选择宇宙以一种非常规则的、按照一定规律的方式演

化。所以,看来可以同样合理地假定,也存在着制约初始状态的定律。

毕全功于一役地设计一种能描述整个宇宙的理论,看来是非常困难的。反之,我们

是将这问题分成许多小块,并发明许多部分理论。每一部分理论描述和预言一定有限范

围的观测,同时忽略其他量的效应或用简单的一组数来代表之。可能这方法是全错的。

如果宇宙中的每一件东西都以非常基本的方式依赖于其他的任何一件东西,很可能不能

用隔离法研究问题的部分去逼近其完备的答案。尽管如此,这肯定是我们在过去取得进

展所用的方法。牛顿引力理论又是一个经典的例子,它告诉我们两个物体之间的引力只

决定于与每个物体相关的一个数——它的质量;而与物体由何物组成无关。这样,人们

不需要太阳和行星结构和成份的理论就可以计算它们的轨道。

今天科学家按照两个基本的部分理论——广义相对论和量子力学来描述宇宙。它们

是本世纪上半叶的伟大的智慧成就。广义相对论是描述引力和宇宙的大尺度结构,也就

是从只有几英哩直到大至1亿亿亿(1后面跟24个0)英哩,即可观测到的宇宙范围的尺度

的结构。另一方面,量子力学处理极小尺度的现象,例如万亿分之一英寸。然而,可惜

的是,这两个理论不是互相协调的——它们不可能都对。当代物理学的一个主要的努力,

以及这本书的主题,即是寻求一个能将其合并在一起的理论——量子引力论。我们还没

有这样的理论,要获得这个理论,我们可能还有相当长的路要走,然而我们已经知道了

这个理论所应具备的许多性质。在以下几章,人们将会看到,我们已经知道了相当多的

量子引力论所应有的预言。

现在,如果你相信宇宙不是任意的,而是由确定的定律所制约的,你最终必须将这

些部分理论合并成一套能描述宇宙中任何东西的完整统一理论。然而,在寻求这样的完

整统一理论中有一个基本的自相矛盾。在前面概括的关于科学理论的思想中,假定我们

是有理性的生物,既可以随意自由地观测宇宙,又可以从观察中得出逻辑推论。在这样

的方案里可以合理地假设,我们可以越来越接近找到制约我们宇宙的定律。然而,如果

真有一套完整的统一理论,则它也将决定我们的行动。这样,理论本身将决定了我们对

之探索的结果!那么为什么它必须确定我们从证据得到正确的结论?它不也同样可以确

定我们引出错误的结论吗?或者根本没有结论?

对于这个问题,我所能给出的回答是基于达尔文的自然选择原理。这思想是说,在

任何自繁殖的群体中,存在有不同个体在遗传物质和发育上的变异。这些差异表明,某

些个体比其他个体对周围的世界更能引出正确的结论,并去适应它。这些个体更可能存

活、繁殖,因此它们的行为和思维的模式将越来越起主导作用。这一点在过去肯定是真

的,即我们称之为智慧和科学发现的东西给我们带来了存活的好处。这种情况是否仍会

如此不是很清楚:我们的科学发现也可以将我们的一切都毁灭。即使不是这样,一个完

整的统一理论对于我们存活的机会不会有很大影响。然而,假定宇宙已经以规则的方式

演化至今,我们可以预期,自然选择赋予我们的推理能力在探索完整统一理论时仍然有

效,并因此不会导致我们得到错误的结论。

因为除了最极端的情况外,我们已有了对所有一切都足够给出精确的预言的部分理

论,看来很难以现实的理由为探索宇宙的终极理论辩护。(值得指出,虽然可用类似的

论点来攻击相对论和量子力学,但这些理论已给我们带来了核能和微电子学的革命!)

所以,一套完整的统一理论的发现可能对我们种族的存活无助,甚至也不会影响我们的

生活方式。然而自从文明开始,人们即不甘心于将事件看作互不相关而不可理解的。他

们渴求理解世界的根本秩序。今天我们仍然渴望知道,我们为何在此?我们从何而来?

人类求知的最深切的意愿足以为我们所从事的不断的探索提供正当的理由。而我们的目

标恰恰正是对于我们生存其中的宇宙作完整的描述。

如何发表宇宙论文文章

收录论文的杂志也有三六九等之分,你的首篇一旦发表,二篇三篇就会想着往更高级别的杂志投,对自己是一种挑战;如果得到高一级别杂志编辑的认可,又能极大增强自己的自信,同时树立自己在圈子里的威望。有什么需要我给你给你参谋一下。这个看你是刚什么用发表的是普通的散文还是学术性质的论文了,一般普通的散文只要投稿杂志3-10天内就会给你打电话是否录用了,然后把稿费给你邮过来,但是学术期刊可以没有什么稿费了,还要你自己付版面费用。而且对文章要求很严。不能要抄袭,格式不能错,什么什么的,我投了好几次都被打回来了。郁闷死,最后在一朋友知道了说我傻不傻现在论文都是在网上找代理的,他给我介绍了“小柯毕业论文”,咨询了一段时间觉得那个客服为人还比较真诚,就试着发了一篇。书都收到了,我还把我的几个朋友介绍过去,都说不错。如果您是要发表职称方面的论文,你也可以去试试。

很多医务工作者在职位晋升上都需要发表论文,可以说如今想要发表论文是非常难的了,但由于发论文需求的人群数量很大,杂志版面却不多,很多人在投稿后都没有消息,对于首次接触论文发表的人来说,并不清楚医生如何发表论文,下面就一起来听听医生是怎么发表论文的。医生投稿前准备:1、投稿方式药正确发表论文投稿,需要参照规范撰写论文,然后按照刊物的稿件处理方式,有些人会通过发送电子邮件投稿,有些人会纸质投稿。 2、格式要规范文章结构式标题标注到作者单位、参考文献的书写规范,需要书写规范化的论文。3、关注审稿进度 从投稿到发表过程,很多作者最关心期刊的质量和地位,但也有人关心审稿周期和审稿进展。 4、正确的联系方式 编辑部与作者的联系主要通过网上投稿系统和邮件。作者可优先选用这2种方式与编辑部保持联系,亦可通过电话查询稿件进展情况。 5、校对过程要迅速论文发表前需经过作者校对。主要在于确认著作权和文章内容。也有人将校样稿发给作者,同时将在校对过程中发现的问题一起反馈给作者。6、退稿的正确处理方式很多刊物都不是来稿照登,被退稿很大部分的原因始是文章体验不好。大多刊物的退稿率比刊用率高,如创刊比较早的医学杂志《新英格兰医学杂志》的刊用率约为7%,至于国内期刊的刊用率如何,需要查看相关数据。7、每个退稿阶段的处理方式也不同当作者对于初审、复审的退稿意见不认同,或者因为文章内容表达不清晰,可以联系编辑。如果解释有理有据,编辑部也会给予从新审稿的机会。如果稿件依然无法通过,就需要另投其他刊物了。

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

据学术堂介绍论文发表只需要六步。第一步:投稿。这是论文发表人员选择好投稿期刊之后,将自己的论文稿件通过邮箱、在线投稿窗口、QQ或者微信即时通讯软件这三大方式发送给编辑。第二步:审核即审稿。投稿之后,编辑会按照投稿顺序对论文进行审稿,有的期刊杂志收取审稿费,如果您的论文需要加急发表,请在投稿时标注清楚,可能会产生加急费用。审稿环节是整个论文发表过程中耗时最长的,影响了论文发表周期的长短,关于论文发表时间影响因素可以阅读《是什么影响论文发表时间长短》了解。这里需要注意的是论文审稿可能会反复进行。第三步:审稿结果。主要介绍通过审稿被录用的论文。通过杂志社论文三审的论文,杂志社会下发录用通知书,并注明预安排在某年某期发表,之所以是预安排,是因为还没交纳版面费。关于论文三审可以阅读《什么时候论文需要三审》,了解一些审稿知识。第四部:交费。这里的交费主要是版面费,交纳之后,论文才会正式进入安排刊期出版流程。第五步:安排发表。版面费到位之后,即可安排刊期,并按照日期出版见刊。少部分论文发表可能会延期,原因很多,例如:有人安排加急。第六步:寄送样刊。论文见刊之后,会给作者寄送一本样刊,作为用途上交的材料。到此整个的论文发表流程结束。

宇宙物理学论文发表

最好的办法是找专业的发表机构帮你,你可以找我

你的问题具体还是看你的文章是什么方面的,现在的期刊很多,你需要找正规的,期刊比较多的网站合作,想我这就是。

含某些有用的数据和信息,主编拒绝这类文章是由于数据或分析有严重缺陷.对这类文章作者 不妨先放一放,等到找到更广泛的证据支持或有了更明晰的的结论,再将经过修改的"新"文章寄 给同一杂志.主编通常是会考虑重新受理这类文章的.这两年,至少有两位审稿人曾经抱怨, 个别国内学者在论文被一家杂志拒绝后,又原封不动地将稿件寄给另外一家杂志,而他们再次被 邀请做审稿.他们对此非常反感.论文理所当然地被拒绝.在谈到这个问题时,《宇宙物理 学》(The Astrophysical Journal)的科学主编Thomas提出,"在一篇论文被一家杂志拒绝后不经修 改又寄给另一个杂志,这是一个很糟的错误.通常,审稿人做了很认真的工作指出论文的问 题,并建议了修改.如果作者忽视这些忠告,这是对时间和努力的真正浪费.同时,寄一篇坏 的文章,对于作者的科学声望是一种严重的损害. 被退稿了怎么办 实际上,影响因子不同 的学术刊物,接受论文的标准和要求差别很大.如果被拒绝的论文不是由于文稿中的错误,而 是重要性或创新性不够,作者在仔细考虑了审稿人的意见,认真修改文稿后,是可以寄给影响 因子较低的学术刊物的.值得注意的是,审稿人由于知识的限制和某种成见,甚至学术观点的不 同,判断错误并建议退稿是会发生的.如何处理情况,有两个例子供参考. 最近一位年轻学者 的论文被一杂志拒绝.经过反复的讨论检验,我们判断审稿人是错误的.为了论文及时发表, 我们建议这位作者礼貌和认真地回信给主编,指出审稿人的错误,并要求主编将他的意见转给 审稿人,然后撤回论文,再将论文做必要改进,寄给另一影响因子更高的杂志.论文立即被接 收,并得到很好的评价.在这一例子中,论文并没有经过重要修改就改寄其它杂志.但是作者 却负责地请主编把对审稿人的意见转寄给审稿人.在这种情况下,作者改寄其它杂志是不应受 到限制和责难的.但前提是对论文结果的反复检验,对论文的正确性有了确切的把握. 我们接 触过的一位学者的一篇论文在一重要杂志经过两年半才得以发表,主要的原因是第一位审稿人 对我国向量磁场测量的可靠性提出质疑,不同意发表这篇论文.通过向权威的同事请教和反复 的思考,我们确认对所进行的研究,所采用的测量,是充分准确和可靠的.作者花了近两年的 时间与审稿人讨论,不但论文得以发表,还与审稿者和主编建立了良好的关系,这篇论文发表 后得到了良好的国际引述. 保证论文英语表述正确妥当 英语不是我们的母语.英语写作是英语学习中最困难的部分.我国SCI论文和引述偏少,除了基 础研究水平的限制,语言的障碍不容忽视.每一位基础研究工作者必须把提高英语写作能力作 为一个艰巨的任务.这里有三个成功的经验供参考.中国科技大学的胡友秋教授总是把审稿人 的英文修改和自己的原稿中被修改的部分单独抄在本子上,一一对照.细心琢磨并背下来,一 点一滴地提高自己英语写作水平.他寄往国际核心刊物的论文常被审稿人称为well-written. 美 国国家太阳天文台有一个内部的审稿制度,其目的主要是保证论文的正确性,同时对研究也有 相互影响和砥砺的好处.不经过内部审稿的论文不能寄给杂志. 资深太阳物理学家Sara Martin 建议找--些可作为范例的论文精读,学习怎样组织和写出好英语,她特别提到已故著名天体物理 学家Zwaan的论文,可作为范文来效仿.论文初稿完成之后,一定要做拼写检查,不出现简单的 拼写出错.如果对自己的英文写作无把握,请一位英文好的同事和国外同行把把英文关必要 的.为从根本上提高我国学者英语水平,我们建议对研究生必须开设英语写作课程.在写英语 上,我们实在需要打个翻身仗. 二,英文科技论文的写作要点 总体原则(3C):Correct (正确),Clear (清楚);Concise (简洁). 1 论文题名 1.1 基本要求 (1) 准确 (Accuracy).题名要准确地反映论文的内容.作为论文的"标签",题名既不能过于 空泛和一般化,也不宜过于烦琐,使人得不出鲜明的印象.如果题名中无吸引读者的信息,或 写得不堪理解.为确保题名的含义准确,应尽量避免使用非定量的,含义不明的词,如 "rapid","new"等;并力求用词具有专指性,如"a vanadium-iron alloy"明显优于"a magnetic alloy". (2) 简洁 (Brevity).题名需用词简短,明了,以最少的文字概括尽可能多的内容.题名最好 不超过10 ~ 12个单词,或100个英文字符(含空格和标点),如若能用一行文字表达,就尽量 不要用2 行(超过2行有可能会削弱读者的印象).在内容层次很多的情况下,如果难以简短 化,最好采用主,副题名相结合的方法,如:Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive CDNA hybridizations (Proc Natl Acad Sci USA, 2000, 97(18): 9834 ~ 9839),其中的副题名起补充,阐明作用,可 起到很好的效果. (3) 清楚(Clarity).题名要清晰地反映文章的具体内容和特色, 明确表明研究工作的独到之 处,力求简洁有效,重点突出.为表达直接,清楚,以便引起读者的注意,应尽可能地将表达 核心内容的主题词放在题名开头.如The effectiveness of vaccination against in healthy, working adults (N Engl J Med,1995,333: 889-893)中,如果作者用关键词vaccination作为题 名的开头,读者可能会误认为这是一篇方法性文章:How to vaccinate this population 相反, 用effectiveness作为题名中第一个主题词,就直接指明了研究问题:Is vaccination in this population effective 题名中应慎重使用缩略语.尤其对于可有多个解释的缩略语,应严加限 制,必要时应在括号中注明全称.对那些全称较长,缩写后已得到科技界公认的,才可使用. 为方便二次检索,题名中应避免使用化学式,上下角标,特殊符号(数字符号,希腊字母 等),公式,不常用的专业术语和非英语词汇(包括拉丁语)等. 1.2 题名的句法结构 题名通常由名词性短语构成,如果出现动词,多为分词或动名词形式.由于陈述句易使题 名具有判断式的语意,同时一般也显得不简洁,因此,大部分编辑和学者都认为题名不应由陈 述句构成.由于题名比句子简短,并且无需主,谓,宾,因此词序就也变得尤为重要.特别是 如果词语间的修饰关系使用不当,就会影响读者正确理解题名的真实含意.例如:Isolation of antigens from monkeys using complement-fixation techniques. 可使人误解为"猴子使用了补体 结合技术".应改为:Using complement-fixation techniques in isolation of antigens from monkeys.即"用补体结合技术从猴体分离抗体". 2 摘要 2.1 基本要求 (1) 确保简洁而充分地表述论文的IMRD,适当强调研究中创新,重要之处(但不要使用评价 性语言);尽量包括论文中的主要论点和重要细节(重要的论证或数据). (2) 使用短而简单的句子,表达要准确,简洁,清楚;注意表述的逻辑性,尽量使用指示性 的词语来表达论文的不同部分(层次),如使用"We found that..."表示结果;使用"We suggest that..."表示讨论结果的含义等. (3) 应尽量避免引用文献,图表,用词应为潜在的读者所熟悉.若无法回避使用引文,应在 引文出现的位置将引文的书目信息标注在方括号内;如确有需要(如避免多次重复较长的术 语)使用非同行熟知的缩写,应在缩写符号第一次出现时给出其全称. (4) 为方便检索系统转录,应尽量避免使用化学结构式,数学表达式,角标和希腊文等特殊 符号. 2.2 摘要写作的时态 摘要写作时所采用的时态应因情况而定,应力求表达自然,妥当.写作中可大致遵循以下 原则: (1) 介绍背景资料时,如果句子的内容不受时间影响的普遍事实,应使用现在式;如果句子 的内容为对某种研究趋势的概述,则使用现在完成式. (2) 在叙述研究目的或主要研究活动时,如果采用"论文导向",多使用现在式(如:This paper presents...); 如果采用"研究导向",则使用过去式(如:This study investigated...). (3) 概述实验程序,方法和主要结果时,通常用现在式.如:We describe a new molecular approach to analyzing ... (4) 叙述结论或建议时,可使用现在式,臆测动词或may, should, could等助动词.We suggest that climate instability in the early part of the last interglacial may have... 2.3 摘要写作的人称和语态 由于主动语态的表达更为准确,且更易阅读,因而目前大多数 期刊都提倡使用主动态,国际知名科技期刊 "Nature","Cell"等尤其如此,其中第一人称和主动 语态的使用十分普遍. 3 引言 3.1 基本要求 (1) 尽量准确,清楚且简洁地指出所探讨问题的本质和范围,对研究背景的阐述做到繁简适 度. (2) 在背景介绍和问题的提出中,应引用"最相关"的文献以指引读者.要优先选择引用的文 献包括相关研究中的经典,重要和最具说服力的文献,力戒刻意回避引用最重要的相关文献 (甚至是对作者研究具某种"启示"性意义的文献),或者不恰当地大量引用作者本人的文献. (3) 采取适当的方式强调作者在本次研究中最重要的发现或贡献,让读者顺着逻辑的演进阅 读论文. (4) 解释或定义专门术语或缩写词,以帮助编辑,审稿人和读者阅读稿件. (5) 适当地使用"I","We"或"Our",以明确地指示作者本人的工作,如:最好使用"We conducted this study to determine whether...",而不使用"This study was conducted to determine whether...". 叙述前人工作的欠缺以强调自己研究的创新时,应慎重且留有余地. 可采用类似如下的表达:To the author's knowledge...;There is little information available in literature about...;Until recently, there is some lack of knowledge about...等等. 3.2 写作要点与时态运用 (1) 叙述有关现象或普遍事实时,句子的主要动词多使用现在时.如:"little is known about X"或"little literature is available on X". (2) 描述特定研究领域中最近的某种趋势,或者强调表示某些"最近"发生的事件对现在的影 响时,常采用现在完成时.如:"few studies have been done on X"或"little attention has been devoted to X" (3) 在阐述作者本人研究目的的句子中应有类似This paper, The experiment reported here 等词,以表示所涉及的内容是作者的工作,而不是指其他学者过去的研究.例如:"In summary, previous methods are all extremely inefficient. Hence a new approach is developed to process the data more efficiently."就容易使读者产生误解,其中的第二句应修改为:"In this paper, a new approach will be developed to process the data more efficiently." 或者,"This paper will present (presents) a new approach that process the data more efficiently." 4. 材料和方法 4.1 写作要点 (1) 对材料的描述应清楚,准确.材料描述中应该清楚地指出研究的对象(样品或产品,动物,植物,病人)的数量,来源和准备方法.对于实验材料的名称,应采用国际同行所熟悉的 通用名,尽量避免使用只有作者所在国家的人所熟悉专门名称. (2) 对方法的描述要详略得当,重点突出. 应遵循的原则是给出足够的细节信息以便让同行 能够重复实验,避免混入有关结果或发现方面的内容.如果方法新颖,且不曾发表过,应提供 所有必需的细节;如果所采用的方法已经公开报道过,引用相关的文献即可(如果报道该方法 期刊的影响力很有限,可稍加详细地描述). (3) 力求语法正确,描述准确.由于材料和方法部分通常需要描述很多的内容,因此通常需 要采用很简洁的语言,故使用精确的英语描述材料和方法是十分重要的.需要注意的方面通常 有: (a)不要遗漏动作的执行者如:"To determine its respiratory quotient, the organism was..."显然,the organism不能来determine 又如:"Having completed the study, the bacteria were of no further interest."显然,the bacteria不会来completed the study. (b)在简洁表达的同时要注意内容方面的逻辑性如:"Blood samples were taken from 48 informed and consenting patients...the subjects ranged in age from 6 months to 22 years",其中的语法没有错误,但6 months的婴儿能表达informed consent (c)如果有多种可供选择的方法能采用,在引用文献时提及一下具体的方法如:"cells were broken by as previously described[9]"不够清楚,应改为:"cells were broken by ultrasonic treatment as previously described[9]". 4.2 时态与语态的运用 (1) 若描述的内容为不受时间影响的事实:一般现在时.如: A twin-lens reflex camera is actually a combination of two separate camera boxes. (2) 若描述的内容为特定,过去的行为或事件,则采用过去式.如:The work was carried out on the Imperial College gas atomizer, which has been described in detail elsewhere[4,5]. (3) 方法章节的焦点在于描述实验中所进行的每个步骤以及所采用的材料,由于所涉及的行 为与材料是讨论的焦点,而且读者已知道进行这些行为和采用这些材料的人就是作者自己,因 而一般都习惯采用被动语态.例如:优:The samples were immersed in an ultrasonic bath for 3 minutes in acetone followed by 10minutes in distilled water. 劣:We immersed the samples in an ultrasonic bath for 3 minutes in acetone followed by 10 minutes in distilled water. (4) 如果涉及表达作者的观点或看法,则应采用主动语态,如下:For the second trial, the apparatus was covered by a sheet of plastic. We believed this modification would reduce the amount of scattering. 优:For the second trial, the apparatus was covered by a sheet of plastic to reduce the amount of scattering. 劣:For the second trial, the apparatus was covered by a sheet of plastic. It was believed that this modification would reduce the amount of scattering. 5 研究结果 5.1 写作要点 (1) 可根据需要建议建议作者是否合并"结果"(Result)与"讨论"(Discussion). (2) 对实验或观察结果的表达要高度概括和提炼,不能简单地将实验记录数据或观察事实堆 积到论文中,尤其是要突出有科学意义和具代表性的数据,而不是没完没了地重复一般性数 据. (3) 数据表达可采用文字与图表相结合的形式.如果只有一个或很少的测定结果,在正文中 用文字描述即可;如果数据较多,可采用图表形式来完整,详细的表述,文字部分则用来指出 图表中资料的重要特性或趋势.切忌在文字中简单地重复图表中的数据,而忽略叙述其趋势, 意义以及相关推论. (4) 适当解释原始数据,以帮助读者的理解.如果论文中还包括独立的"讨论"章节,应将对 于研究结果的详细讨论留到该部分,但"结果"中应该提及必要的解释,以便让读者能清楚地了 解作者此次研究结果意义或重要性. (5) 文字表达应准确,简洁,清楚.避免使用冗长的词汇或句子来介绍或解释图表.为简 洁,清楚起见,不要把图表的序号作为段落的主题句,应在句子中指出图表所揭示的结论,并 把图表的序号放入括号中.例如"Figure 1 shows the relationship between A and B"不如"A was Significantly higher than B at all time points hecked (Figure 1)".又如,"It is clearly shown in Table 1 that nocillin inhibited the growth of N. gonorrhoeae."不发"Nocillin inhibited the growth of N. gonorrhoeae (Table 1)." 5.2 时态的运用 (1) 即指出结果在哪些图表中列出,常用一般现在时.如:Figure 2 shows the variation in the temperature of the samples over time. (2) 叙述或总结研究结果的内容为关于过去的事实,所以通常采用过去时.如:After flights of less than two hours, 11% of the army pilots and 33% of the civilian pilots reported back pain. (3) 对研究结果进行说明或由其得出一般性推论时,多用现在时.如:The higher incidence of back pain in civilian pilots may be due to their greater accumulated flying time. (4) 不同结果之间或实验数据与理论模型之间进行比较时,多采一般现在时(这种比较关系 多为不受时间影响的逻辑上的事实).如:These results agree well with the findings of Smith, et al. 6 讨论 6.1 基本内 "讨论"的重点在于对研究结果的解释和推断,并说明作者的结果是否支持或反对 某种观点,是否提出了新的问题或观点等.因此撰写讨论时要避免含蓄,尽量做到直接,明确,以便审稿人和读者了解论文为什么值得引起重视.讨论的内容主要有: (1) 回顾研究的主要目的或假设,并探讨所得到的结果是否符合原来的期望 如果没有的 话,为什么 (2) 概述最重要的结果,并指出其是否能支持先前的假设以及是否与其他学者的结果相互一 致;如果不是的话,为什么 (3) 对结果提出说明,解释或猜测;根据这些结果,能得出何种结论或推论 (4) 指出研究的限制以及这些限制对研究结果的影响;并建议进一步的研究题目或方向; (5) 指出结果的理论意义(支持或反驳相关领域中现有的理论,对现有理论的修正)和实际 应用. 6.2 写作要点 (1) 对结果的解释要重点突出,简洁,清楚.为有效地回答研究问题,可适当简要地回顾研 究目的并概括主要结果,但不能简单地罗列结果,因为这种结果的概括是为讨论服务的. (2) 推论要符合逻辑,避免实验数据不足以支持的观点和结论.根据结果进行推理时要适 度,论证时一定要注意结论和推论的逻辑性.在探讨实验结果或观察事实的相互关系和科学意 义时,无需得出试图去解释一切的巨大结论.如果把数据外推到一个更大的,不恰当的结论, 不仅无益于提高作者的科学贡献,甚至现有数据所支持的结论也受到怀疑. (3) 观点或结论的表述要清楚,明确.尽可能清楚地指出作者的观点或结论,并解释其支持 还是反对早先的工作.结束讨论时,避免使用诸如"Future studies are needed."之类苍白无力 的句子. (4) 对结果科学意义和实际应用效果的表达要实事求是,适当留有余地.避免使用"For the first time"等类似的优先权声明.在讨论中应选择适当的词汇来区分推测与事实.例如,可选用 "prove","demonstrate"等表示作者坚信观点的真实性;选用"show","indicate","found"等表 示作者对问题的答案有某些不确定性;选用"imply","suggest"等表示推测;或者选用情态动词 "can","will", "should","probably","may","could","possibly"等来表示论点的确定性程 度. 6.3 时态的运用 (1) 回顾研究目的时,通常使用过去时.如:In this study, the effects of two different learning methods were investigated. (2) 如果作者认为所概述结果的有效性只是针对本次特定的研究,需用过去时;相反,如果 具有普遍的意义,则用现在时.如: In the first series of trials, the experimental values were all lower than the theoretical predictions. The experimental and theoretical values for the yields agree well. (3) 阐述由结果得出的推论时,通常使用现在时.使用现在时的理由作者得出的是具普遍有 效的结论或推论(而不只是在讨论自己的研究结果),并且结果与结论或推论之间的逻辑关系 为不受时间影响的事实.如:The data reported here suggest (These findings support the hypothesis, Our data provide evidence) that the reaction rate may be determined by the amount of oxygen available. 7 结论 通常情况下,有关结论的内容都包括在"结果与讨论"或"讨论"中,但有时也可将"结论"单独列为 一节.在"结论"中作者应清楚,简洁地叙述自己研究的主要认识或论点,其中包括最重要的结 果,结果的重要蕴含,对结果的说明或认识等.应注意的是,撰写结论时不应涉及前文不曾指 出的新事实,也不能在结论中重复论文中其他章节中的句子,或者叙述其他不重要或与自己研 究没有密切联系的内容,以故意把结论拉长. 三,英文科研文章常见语言技巧 如何指出当前研究的不足以及有目的地引导出自己的研究的重要性 通常在叙述了前人成果之后,用However来引导不足,比如: However, little information.. little attention... little work... little data little research or few studies few investigations... few researchers... few attempts... or no none of these studies has (have) been less done on ... focused on attempted to conducted investigated studied (with respect to) Previous research (studies, records) has (have) failed to consider ignored misinterpreted neglected to overestimated, underestimated misleaded thus, these previus results are inconclisive, misleading, unsatisfactory, questionable, controversial.. Uncertainties (discrepancies) still exist ... 这种引导一般提出一种新方法,或者一种新方向.如果研究的方法以及方向和前人一样, 可以通过下面的方式强调自己工作的作用: However, data is still scarce rare less accurate there is still dearth of We need to aim to have to provide more documents data records studies increase the dataset Further studies are still necessary... essential... 为了强调自己研究的重要性,一般还要在However之前介绍自己研究问题的反方面,另一 方面等等,比如: 1)时间问题 如果你研究的问题时间上比较新,你就可以大量提及对时间较老的问题的研究及重要性, 然后说(However),对时间尺度比较新的问题研究不足 2)物性及研究手段问题 如果你要应用一种新手段或者研究方向,你可以提出当前比较流行的方法以及物质性质, 然后说对你所研究的方向和方法,研究甚少. 3)研究区域问题 首先总结相邻区域或者其它区域的研究,然后强调这一区域研究不足. 4)不确定性 虽然前人对这一问题研究很多,但是目前有两种或者更多种的观点,这种uncertanties, ambiguities,值得进一步澄清. 5)提出自己的假设来验证. 如果自己的研究完全是新的,没有前人的工作进行对比,在这种情况下,你可以自信地 说,根据提出的过程,存在这种可能的结果,本文就是要证实这种结果. We aim to test the feasibility (reliability) of the ... It is hoped that the qutestion will be resolved (fall away) with our proposed method (approach). 提出自己的观点 We aim to This paper reports on provides results extends the method.. focus on The purpose of this paper is to Furthermore, Moreover, In addition,, we will also discuss... 圈定自己的研究范围 前言的另外一个作用就是告诉读者包括(reviewer)你的文章主要研究内容.如果处理不好, reviewer会提出严厉的建议,比如你没有考虑某种可能性,某种研究手段等等.为了减少这种 争论,在前言的结尾你就要明确提出本文研究的范围: 1)时间尺度问题 如果你的问题涉及比较长的时序,你可以明确地提出本文只关心这一时间范围的问题. We preliminarily focus on the older (younger)... 或者有两种时间尺度的问题 (long-term and short term),你可以说两者都重要,但是本文 只涉及其中一种. 2) 研究区域的问题 和时间问题一样,明确提出你只关心这一地区 最后的圆场 在前言的最后,还可以总结性地提出,这一研究对其它研究的帮助.或者说, further studies on ... will be summarized in our nextstudy (or elsewhere) 总之,其目的就是让读者把思路集中到你要讨论的问题上来.减少争论(arguments).关于词 汇以及常用结构,要经常总结,多读多模仿才能融会贯通. 怎样提出观点 在提出自己的观点时,采取什么样的策略很重要.不合适的句子通常会遭到reviewer的置 疑. a)如果观点不是这篇文章最新提出的,通常要用We confirm that... b)对于自己很自信的观点,可用We believe that... c)在更通常的情况下,由数据推断出一定的结论,用Results indicate, infer, suggest, imply that... d) 在及其特别的情况才可以用We put forward (discover, observe..) .. "for the first time". 来强调自己的创新. e) 如果自己对所提出的观点不完全肯定,可用 We tentatively put forward (interrprete this to..) / The results may be due to (caused by) attributed to rsulted from./. This is probably a consequence of It seems that .. can account for (interpret) this../ It is pisible that it stem from... 连接词与逻辑 写英文论文最常见的一个毛病就是文章的逻辑不清楚.解决的方法有: 1)句子上下要有连贯 不能让句子之间独立,常见的连接词语有, However, also, in addition, consequently, afterwards, moreover, Furthermore, further, although, unlike, in contrast, Similarly, Unfortunately, alternatively, parallel results, In order to, despite, For example, Compared with other results, thus, therefore... 用好这些连接词,能够使观点表达得有层次,更加明确. 比如,如果叙述有时间顺序的事件或者文献, 最早的文献可用AA advocated it for the first time. 接下来,可用Then BB further demonstrated that.. 再接下来,可用Afterwards, CC.. 如果还有,可用More recent studies by DD.. 如果叙述两种观点,要把它们截然分开 AA pput forward that... In contrast, BB believe or Unlike AA, BB suggest or On the contrary (表明前面的观点错误,如果只是表明两种对立的观点,用in contrast), BB.. 如果两种观点相近,可用 AA suggest Similarily, alternatively, BB.. or

发表SCI论文一般:1你做了一定的科研,弄出了点创新的东西 2自己写作能力和语言表达能力比较强 3所投期刊合适。其中写作能力这个非常重要,如果第一次投稿,建议可以发EI试试,如果学校认可的话,可以发EI会议论文,你百度下:EI学术会议中心,有很多相关学习教程。SCI录用难度很大,而且大部分审稿很长时间,如果想锻炼自己的写作能力,可以百度下:普刊学术中心,很多写作技巧类教材可以多学习下

宇宙论文发表

是齐奥尔科夫斯基。

1903年,俄罗斯的康斯坦丁·齐奥尔科夫斯基发表了《利用喷气工具研究宇宙空间》的论文,深入论证了喷气工具用于星际航行的可行性。

在齐奥尔科夫斯基一生中,他最感兴趣、花费精力最多、取得成就最大的领域是航天。在很小的时候,有关星际航行的问题已经开始强烈地吸引着他。他在1911年回忆说:"在过去很长时间里,我也和其他人一样,认为火箭不过是一种少有用途的玩具。

齐奥尔科夫斯基认为:要想环绕地球轨道必须克服地球引力,达到必须具备的速度,需要使用液氧和液氢作为推进剂的多级火箭。火箭的推进剂经过燃烧室燃烧之后,产生高温高压气体,经过喷管加速喷出,产生反作用力推动火箭前进。

齐奥尔科夫斯基不但提出了密封舱和空间站的设想,还设计了多级火箭、火箭推进器方案,以及在太空生存密封生态循环系统,为航天员提供食品和氧气等设想。

《利用喷气工具研究宇宙空间》

《利用喷气工具研究宇宙空间》阐明了火箭飞行理论,论述了将火箭用于星际交通的可能性,提出了液体燃料火箭的思想和原理图,并完成了世界上第一架喷气发动机的计算。这本划时代航天史书提出了齐奥尔科夫斯基公式:火箭飞行速度同火箭发动机喷气速度、火箭质量、燃料质量关系的公式。

在其30多年的生涯中,HST已经进行了 140多万次观测 ,科学家依据其观测数据,撰写了 超过18000篇论文 。

它的后期目标定位于遥远的漩涡星系,并帮助绘制了暗物质的区域图。对HST图像的分析,甚至帮助科学家们获得了 2011年的诺贝尔奖 ——发现宇宙的膨胀速度正在加快。

也因此,人们如此评价HST: 当地球上有问题时,哈勃会回答 。

HST的“十大发现”

在HST其后的工作时间里,天文观测取得了巨大成功,天文学领域据此发表了大量观测、分析、研究性论文,且引用率很高。

HST拍摄了大量宇宙空间、星系和恒星的照片;在不同波段对宇宙进行了 长期观测 ;观测到距地球130亿光年的 原始星系 ,发出的光芒来自大爆炸后刚形成的宇宙早期;发现了5颗 太阳系行星 。

此外,它还在黑洞、类星体、恒星诞生与死亡、宇宙年龄、暗物质等方面的观测研究中取得了 突出成果 。

截止到2006年,HST在轨运行了15年,得到了许多激动人心的发现,拍摄了 45亿张 精美的天文照片。人们对它的发现进行了总结,评出了最重大的“十大发现”:

HST的主要任务之一就是帮助天文学家 测定宇宙的准确年龄 。

天文学家用HST观测到仙女 星座 和其它星群中的造父变星,以确定宇宙的膨胀速度和年龄。HST将宇宙的年龄精确到 130亿至140亿年之间 。目前,最新的研究结果将宇宙年龄精确到了 137亿岁 。

HST在对 暗能量 的研究工作中扮演了 重要角色 。

暗能量是一种神秘形态的力,起到宇宙气体“踏板”的作用,加快了宇宙膨胀的速度。

HST关于超新星的资料,帮助研究者揭示这种神秘力量在宇宙中 持续存在 。

HST完成了对太阳系外一颗行星大气层化学构成的 直接测量 。

在一颗木星大小的行星大气中,它发现了钠、氢、碳和氧元素。

这一观测结果证明,HST和其它望远镜可以从一些天体的大气中进行化学构成的 采样工作 。

HST给天文学家提供了遥远的星系照片,反映了宇宙 诞生之初 的景象,为科学家进一步了解宇宙的 起源和演变 提供了宝贵的资料。

HST拍摄了M87椭圆星系的图像,观测资料证实大多数星系的中心都具有一个 巨大的黑洞 。

1999年1月23日HST捕捉到了 伽马射线暴 的景象,这是当时纪录过的 最大规模 的一次伽马射线暴。

拍摄的图像显示,这些放射线的短暂闪光来自于遥远的星系,这些星系以非常快的速度形成众多恒星。

图像还确定了这些爆炸来源于一些 巨大星体的瓦解 。

天文学家使用HST追踪到一些类星体的“家”( 宿主星系 ),并且证明它们位于这些星系的 中心区域 。

HST拍摄到了猎户星云中的 原行星盘 ,资料证明,烤盘形状的尘埃盘围绕着年轻恒星的现象很平常。

HST拍摄到了1994年7月名为苏梅克·列维9号的 彗星断裂 成21个碎块 撞击木星 的情景,撞击所产生的蘑菇形火球冲击到了木星上空。

HST拍摄到的一组在跳跃的颜色中烁烁发光的 行星状星云 ,向人们描绘了垂死恒星的最后色彩。

行星状星云是一些即将消亡的恒星所抛射出的气体外壳,HST拍到的图像显示,行星状星云就像雪花一样,没有任何两个是完全一样的。

HST在第二次维修前的巨大成就

到1997年4月,HST已工作了7年,这期间它取得了丰硕的科学成果。

来自全世界20多个国家的2000多名科学家,利用HST进行了11万多次科学观测,并在分析的基础上撰写了1346篇论文。

这期间HST取得的主要成就包括:增进了人类对 宇宙年龄和大小 的了解;证明某些星系中央存在 超高质量的黑洞 ;观察了数千个星系和星系团,探测到了宇宙诞生早期的“ 原始星系 ”,使科学家有可能跟踪研究宇宙发展的 历史 ;对神秘的 类星体 和其存在的环境进行了深入观测;更深入揭示了恒星的不同 形成过程 ;对宇宙诞生早期恒星形成过程中 重元素的组成 进行了研究;揭示了已死亡的恒星周围 气体壳 的复杂组成;对猎户座星云中年轻恒星周围的尘埃环进行了观测,揭示出银河系中存在其他 行星系统 ;对 苏梅克彗星与木星相撞 进行了详细观测;对火星等 行星 进行了观测;发现木星的两颗卫星——木卫二和木卫三的大气层中 存在氧 。

HST第二次维修安装的 近红外相机 及 多目标分光计和图像摄谱仪 ,使望远镜能够跟踪 宇宙大爆炸后10亿年左右 形成的古老星系,并能详细观测黑洞、膨胀的星系、爆炸后的恒星以及众多天体。

第二次维修工作使HST的 寿命得到提高 ,观测能力 进一步增强 ,观测光波段延伸到 近红外 范围。

创造早期宇宙成像的黄金时代

HST在多次维修过程中,更换了所有的原装观测仪器。

其中有两件新仪器非常重要,分别是第三次维修时安装的 高级巡天相机(ACS) 和第五次维修时安装的 宽视场相机3号(WFC3) 。

ACS在可见光到红外光中能 穿越宇宙级的距离 ,非常适合测量 红移星系 和 中等到大型星系团 。

WFC3用于观测研究 各演化阶段 的星系,从极遥远的年轻星系到较近的恒星系统,也包括太阳系内的行星系统和系外行星。

它的主要特点是 跨越电磁频谱 的能力,从紫外线到可见光,并进入近红外(NIR)波段,其在近红外源获得的全新高清晰图像,使之成为后继者韦伯望远镜的重要先驱。

WFC3的广谱“全色”覆盖范围与ACS是极好的补充,两者协同工作,被认为创造了一个新的 早期宇宙成像的黄金时代 ,为天文学家提供了当时 最佳观测功能 ,在宽波长范围内提供了极好的 宽视场成像质量 。

探索 早期宇宙和星系

HST在早期宇宙和星系观测方面的重要成果,可追溯到 宇宙大爆炸数亿年后 的情形,对认识早期宇宙、早期星系具有重要意义。

这些成果大都采用HST的 超深场模式 (Ultra Deep Field)拍摄,采用的仪器前期主要是ACS,2009年后则以高ACS与WFC3的组合为主。

这种观测模式一般在 极小的天区范围 进行,约为满月直径的十分之一,视场范围内包含约5500个星系,最暗星系的亮度是人眼所能看到的亮度的 百亿分之一 ,即使用先进的观测仪器也非常难以“看到”,因此经常采用“ 引力透镜 ”原理将观测源发出的光线进行聚焦、放大。另外,拍摄这样一张极远的宇宙图像,往往需要 多次、长时间曝光 。

>>>

2003年9月24日至2004年1月16日间,HST对南天区鲸鱼座和波江座附近的天炉座一小片天区,进行了 800次曝光 ,总曝光时间达 11.3天 ,最终拍摄了一张照片。

照片中最小、最红的小点显示的遥远星系,约有100个,可能是当时 已知最遥远的星系 ,存在于 宇宙大爆炸后8亿年 的时候。

>>>

2009年,HST在近红外光下拍摄了 更远、更深 的宇宙图像。

当年8月,HUDF09团队利用新安装的WFC3红外通道,对前述同一天区进行观测,拍摄过程共4天,总曝光时间 173000秒 。

照片显示的星系红移量Z达到8 8.5,推算出这是 宇宙大爆炸后6亿年 的情景。

>>>

2012年11月16日,HST在大熊 星座 附近的一个小天区进行了极深场拍摄,并且利用了周围巨大的星系团产生的引力透镜放大效应,获得了一个名为 MACS0647-JD 的星系照片。

MACS0647-JD只在红色波长下发光,是一个 非常年轻 的星系,估计形成于 宇宙大爆炸后4.2亿年 ,其直径约600光年,比银河系(直径150000光年)小约250倍。

早期的星系一般都 极不稳定 ,在此后的数十亿年间将发生无数次碰撞,然后逐渐形成我们能看到的巨大宇宙结构。

在接下来的130亿年中,MACS0647-JD可能会与其他星系和星系碎片发生数十、数百甚至数千次 合并事件 ,这一观测成果将有助于科学家了解宇宙在第一批恒星和星系出现时如何形成。

没有最远,只有更远!

HST和宇航局另一个重要的红外天文卫星(运行于地球跟随日心轨道) 斯皮策太空望远镜 (SpitzerSpace Telescope,缩写为 SST )单独或共同作出的发现,不断改写着观测最远星系的 历史 。

正应了那句话“ 没有最远,只有更远! ”

>>>

2015年5月和9月,发现了两个最远星系候选者,前者被命名为 EGS-zs8-1星系 ,距离地球约131亿光年;后者被命名为 EGS8p7星系 ,距离地球约132亿光年。

按照目前对宇宙年龄的估计,它们分别诞生于大爆炸 6亿年 和 5亿年 后。

EGS-zs8-1星系的红移是此前测量中 最高 的,最初由HST和SST识别,后来使用夏威夷凯克天文台10米望远镜进行了详细观测。

根据这些观测和分析结果,研究人员认为EGS-zs8-1中的恒星“年龄在1亿到3亿年之间”,是 非常年轻的恒星 ,也是 宇宙诞生后的第一批恒星 。因而,EGS-zs8-1在当时被认为是迄今为止被观测到的 最古老星系之一 。

观测结果还表明,EGS-zs8-1形成恒星的速度是银河系的80倍, 非常活跃 。

此外,根据SST在该星系和其他早期星系中观察到的独特颜色,科学家认为可能是这些星系中的原始气体相互作用导致 大质量年轻恒星快速形成 所造成。

对该星系的进一步研究,有可能揭示在早期星系和年轻恒星里形成 重元素的类型和数量 。

>>>

2018年,在观测SPT-CLJ0615-5746星系团时,HST非常幸运地发现了 SPT0615-JD星系 。

这是一个很小的、处于 胚胎期 的星系,距离大爆炸仅 5亿年 ,HST是借助引力透镜原理,拍摄到了这个星系的照片。

天文学家估计,这个小星系的质量不超过30亿太阳质量(大约是银河系质量的1/100),直径不到2500光年,只有小麦哲伦星云的一半。该星系被认为是大爆炸后不久即出现的 年轻星系的原型 。

虽然在早期时代,已经看到了一些其他的原始星系,但由于它们的小尺寸和巨大距离,看起来都像是小小的红点。

然而,在一个巨大的前景星系团的引力场作用下,不仅放大了背景星系发出的光,而且还将目标星系也放大成了小弧形(约2弧秒长)。

结合HST和SST的数据,该新生星系的红移值高达10,其时间可回溯到 133亿年前 ,即宇宙诞生后4~5亿年。

科学家指出,这个星系已经处于 HST探测能力的极限 ,后续工作将由韦伯太空望远镜继续,包括早期宇宙中 恒星诞生、演化的细节 以及 早期星系的子结构 问题。

>>>

2014年1月5日-9月28日,HST利用ACS和WFC3的红外通道,在南天波江座附近,又观测一个非常遥远的星系,并将其取名 Tayna ,意思是“第一个出生”。

这次观测和成像也利用了引力透镜原理,大大增强了星系的光线亮度,使其看起来比正常亮度高20倍。

根据其红移数据,科学家估计它距离我们 约有133亿年 ,相当于 宇宙诞生后4亿年 ,是当时发现的 最远天体 。

它的大小与大麦哲伦星云相当,里面的恒星形成速度为大麦哲伦星云内恒星形成速度的10倍。

>>>

HST于2015年2月11日和2015年4月3日对北天区进行深入观测,并于2016年3月3日在大熊 星座 方向发现了可能是迄今为止已知的 最远星系 ,但当时并未估计出该星系的红移量。

2017年4月,北京大学科维理天文与天体物理研究所江林华领衔的国际团队利用世界上最先进的地基红外望远镜之一——夏威夷山上10米口径的凯克望远镜,对这个星系进行了深度光谱观测,基于光谱分析和计算得出该星系的准确红移为 10.957 ,证实其为 134亿光年 之外的星系,即这个星系只有 3 4亿岁 。

由于该星系红移量高达11,因此将其命名为 GN-z11 ,其中z就代表红移。

研究团队不仅从光谱中读出了准确红移,也读出了其他信息。

光谱显示有三条发射线,由碳和氧的二次电离气体发出,表明该星系中已有丰富的非氢非氦元素。该信息暗示,新发现的星系可能 并非宇宙中的第一代星系 。

这个发现对理解宇宙早期星系和恒星形成有重要意义,为研究宇宙 极早期天体 打开了一扇窗口。

HST和SST联合成像显示,GN-z11比银河系小25倍,恒星质量仅为银河系的1%。然而,GN-z11的成长速度非常快,形成恒星的速度大约是银河系的20倍。

>>>

HST和SST对于宇宙极深处和极早期的观测和取得的成果已经今科学家万分激动。

红外波段更宽、仪器观测精度更高的韦伯望远镜应当能够观察到 更遥远 、 距离大爆炸仅几亿年 的早期宇宙和第一批恒星、星系面貌,有可能取得更具突破性的成果。

说实话外文期刊,本科学历发表有写困难,可以帮你尝试下。

我院2017届本科毕业生张雅鹏在《NATURE》发文, 首次在太阳系外行星大气中发现和测量同位素

南京大学天文与空间科学学院 昨天

一国际天文研究团队首次探测到系外行星大气中的 碳同位素13C ,并发现其相对含量高于地球标准(图1)。这有助于研究者们追溯此类行星的形成与演化 历史 。相关研究论文(标题为“The 13CO-rich atmosphere of a young accreting super-Jupiter”)于2021年7月15日在《自然》(Nature)杂志发表。该论文的第一作者 张雅鹏 2017年本科毕业于 南京大学天文与空间科学学院 ,现为荷兰莱顿天文台博士研究生。

图1: 探测系外行星大气中的同位素(想象图) Daniëlle Futselaar

1穆朗玛峰 应用广泛的同位素 同位素(isotope)是指同一化学元素的不同种类。这些同位素虽然质子数目相同,却有着不同的中子数目。例如,包含6个质子以及6个中子的碳原子是最常见的12C,但也有碳原子含有7个或8个中子,称为13C或14C。虽然它们的化学性质相近,但各种同位素的形成过程和对环境的反应却不尽相同。因而,同位素被广泛应用于各种研究领域——从癌症、心血管疾病的检测,到气候变化以及化石年龄的推断等。天文学家亦利用同位素来研究恒星与星际介质的演化,太阳系以及系外行星的起源。

2

丰富多样的系外行星

迄今天文学家们已发现超过四千颗系外行星,并且这一数字仍在迅猛增长。而绝大多数系外行星却与我们太阳系内的行星有着巨大的差异。它们或有着极高的质量(例如,“超级木星” super-Jupiter),或占据着的极近的轨道(“热木星” hot-Jupiter)……系外行星的多样性给行星形成理论带来了新的挑战。许多最基本的问题仍困扰着天文学家:行星的形成路径究竟是自上而下,还是自下而上?它们形成于何处?轨道是否迁移?……解开这些谜题的钥匙之一便是系外行星的大气成分,它们如同化石遗迹一般记载着这些行星遥远的过去。

图2: 行星形成环境示意图。行星诞生于恒星周围的原行星盘中,一氧化碳CO是碳元素的主要载体。CO雪线代表CO为气态或固态的分割线。位于CO雪线内侧的两颗行星代表太阳系木星和海王星当前的位置,而TYC 8998 b则远位于CO雪线之外。在如此遥远的距离,大部分CO冻结在固态物质表面,成为行星形成的主要原材料。由于13C更易结合在固态表面,导致最终构成的行星中更富含13C。

3 用同位素追溯系外行星起源 研究者们利用欧洲南方天文台(ESO)的甚大望远镜(VLT),发现在一颗名为TYC 8998-760-1 b的超级木星大气中两种碳同位素的比例不同寻常。这颗行星的重量几乎是太阳系木星的14倍,距离地球300光年。这是天文学家们首次实现对遥远系外行星中同位素的观测。他们利用不同的光谱吸收信号分辨出13CO和12CO(一氧化碳分子的两种同位素形式),并测定两者的相对含量。天文学家们预期星际介质中13C和12C的含量比例约为1:70,但这颗行星大气中的13C却要多一倍。这颗行星大气中13C的“超标”,为我们揭示其可能的起源过程提供了线索 (图2)。张雅鹏解释说:“这颗超级木星距离其宿主恒星十分遥远,是日地距离的160多倍。在如此远距离下,原行星盘(protoplanetary disk)中更多的13C冻结在固体物质表面。而这些固体物质被诞生于此的行星所吸收,造就了如今观测到的富含13C的大气”。 因此,通过测定大气中同位素相对含量,研究者们得以追溯行星形成的位置以及周围的物质环境。

该论文的通讯作者、莱顿大学教授Ignas Snellen说:“这一发现为研究系外行星大气与行星形成之间的关联开辟了一条新的路径。今后,天文学家们将会把同位素观测扩展到多样化的系外行星系统中,向揭秘行星起源更进一步。现在,这仅仅是个开始!”

宇宙物理学论文发表要求

想法多如牛毛。你需要提出一个完整的理论。

你需要做一个完整的数学处理:把想法写成方程,并证明它是自一致的。

然后,演示它如何准确地预测一些已知的事实。这些可以是理论结果。

然后,你证明它是如何准确地预测一些已知是正确的事情,但目前还没有解释。这些必须是实际的观察结果。

或者,你可以证明它是如何预测目前没有其他理论预测的东西,并提出一个实验来区别于所有竞争的理论,包括目前已被接受的理论。

你不把它寄给一个“组织”,你把它写成一篇合适的科学论文,然后寄给一个科学出版物。他们会通过审查,试图找出其中的漏洞,这个过程被称为“同行审查”。他们会把它送回来给你改正。

在它被接受出版之前,你可以把它放到ArXiv网站上。在那里,整个科学界都将看到它,并试图在其中挖掘漏洞。

实际上,您不需要一次性完成所有这些;你可以先从数学处理开始,然后再做其他的事情。然后,你可以很好地利用科学的迭代过程,如上所述,以确保你不会做所有的后续工作,只是在第一步中发现漏洞,所以你必须重新开始。

这里的典型代表是相对论。当它的第一部分在1905年首次出版时,人们认为它很有趣。这就是上面的“自洽方程”。

然后,他们坐起来注意到第二部分,因为它预测的关于水星轨道的结果与牛顿万有引力理论不同——爱因斯坦的预测与观测结果一致,而牛顿的预测与观测结果不一致。(这是“正确但没有解释”的事情)。

爱因斯坦还预测,来自遥远恒星的光在经过太阳时将发生弯曲,这是其他理论都无法预测的。当这一点被日食观测证实后,爱因斯坦立即成为了他今天的物理学偶像。

如何发表和撰写SCI论文 对从事基础研究的科学工作者,能否在SCI收录的杂志发表论文,是能否进入学术前 沿,在国际公认的同一个平台上参与学术竞争,做出原创性贡献的一个基本标志。 那么怎样的论文才是合格的?本文提出一些建议供大家参考。 在国际核心刊物发表学术论文是基础研究工作者的贡任,大者作为国家,小者作为 一个研究群体或个人,在高影响因子的SC]刊物上发表论文的多寡,显然是基础研究 水平的一个较为客观的标志。罗伯特?戴在其名著《如何撰写和发表科学论文》的序 言中指出,“对一个科学家的评价,从研究生开始,就主要不是看他在实验室操作 的机敏,不是看他对或宽或窄的研究领域固有的知识,更不是看他的智能和魅力, 而是看他的著述。他们因此而出名,(或依然默默无闻)。”他曾领导美国微生物学 会出版工作19年并作为《细菌学》杂志的主编。他的深刻的见地 值得从事基础研究的同事们思考。 原创性和显著性是论文的生命 正如蕹新吃士等在“再论科学道德问题”中指出,在国际核心刊物发表的论文,原 则上都应当是“在国际上首次”描述的新的观测和实验事实,首次提出的概念和模 型,首次建立的方程,也包括对已有的重大观测(实验)事实的新的概括和新的规 律的提炼。与原创性相联系,任何期刊都不希望发表已经见于其它杂志,或由其它 语言发表、或以稍有不同的形式发表的论文。太阳物理学权威刊物《太空物理学》 (Solar,physics〉主编Harvey曾专门谈到,曾有少数作者在主要结果用中文发表后 又寄给《太空物理学》。他强调,过去这是可以容忍的,但现在已 不允许。一个公认的原则是,作者不能把已在经过审稿的杂志发表的主要结果再以 不同的形式投寄给其它杂志再发表。 发表在国际核心刊物的论文,不仅应该是原创性的,其结果还必须是显著的,井对 学科发展有所推,动。用Harvey的话来说,“至少有一、两个其他研究者会读这篇 文章,并利用这些结果发表,他们自己的工作。”对成果显著性的检验是论文被引 用的多寡。作者应当关心自己论文被引用的情况,注意国际学术界对自己工作的评 价,包括得到肯定和批评的方面,特别是注意同行们对自己发表结果的不同的理解 。这是提高自己研究水平的重要途径。 充分评价已有的工作,体现作者的学术水平 是否客观而充分地评价了以往的工作,常常是审稿人和读者衡量作者学术水准和学 术风范的重要方面。我们一部分作者往往愿意引述国外知名学者的工作,有点“言 必称希腊”的味道,但对国内同行发表的工作重视不够。有时明明是中国学者首先 做的工作,都没有得到自己的国内同行的充分评价。较多地并且适当地援引国内同 行工作,是应当提倡的。但是,我们也不要学习少数日本作者,他们绝少引用日本 学者之外的文章。部分同行在论文中引述相当数量公式,但却不列出公式的出处, 让读者分不清是作者发展的,还是引自他人以往的工作。原则上,除了教科书上公 认的方程和表达式外,对于用于特定目的、特定条,件和问题的推演,只要不是作 者自己的工作,都要列出出处和适用的条件;即便是作者自己以往的工作,也要列 出相应的文献,让读者在必要时参考作者在充分评价以往工作的基础上,应当清晰 地指出自己在当前工作中的 独创性的贡献。这是作者对科学负责的表现,是一篇好的学术论文开宗明义必须写 清楚的内容。 要特别重视论文的题目、摘要、图表和结论 每一位作者都有阅读大量论文的经验。读者阅读论文的习惯一般是首先浏览目录, 只有对题目有,兴趣才愿意翻到有关论文;对一篇题目有兴趣的论文,读者又首先 读论文摘要;如果对摘要还有兴趣,接着会去看论文的图表,因为图表往往最清楚 地反映了论文的结果。看过图表之 后,如读者还有兴趣,会接着读论文的结论。通常只有少数读者会读论文的全文。 作者应当清晰地知道,论文的题目将被数以千计的读者读到。对题目的每一个字都 要审慎地选择,用最少的词语最确切反映论文的`内容。 正确对待审稿意见和退稿 国际核心刊物的审稿人大多是各个领域的权威学者。杂志的出版社会经常征询编委 的意见,选择最佳的审稿队伍。审稿是无报酬的。审稿人的工作态度大多极其认真 。对审稿意见要十分尊重,对每一条批评和建议,都要认真分析,并据此修改论文 。对自己认为是不正确的意见,要极其慎重,和认真地回答,有理有据地与审稿人 探讨。如何对待被杂志拒绝的论文,常常是作者犯难的问题。这里必须分析被拒绝 的理由。第一类拒绝是一种“完全的拒绝”,主编通常会表达个意见,对这类文章 永远不愿再看到,再寄送这类文章是没有意义的。有一类是文章包含某些有用的数 据和信息,主编拒绝这类文章是由于数据或分析有严重缺陷。对这类文章作者不妨 先放一放,等到找到更广泛的证据支持或有了更明晰的的结论,再将经过修改的“ 新”文章寄给同一杂志。主编通常是会考虑重新受理这类文章的。这两年,至少有 两位审稿人向笔者抱怨,个别中国同事在论文被一家杂志拒绝后,又原封不动地将 稿件寄给另外一家杂志,而他们再次被邀请做审稿。他们对此非常反感。论文理所 当然地被拒绝。在谈到这个问题时,《宇宙物理学》(The,Astrophysical,Journ al)的科学主编Thomas提出:“在一篇论文被一家杂志拒绝后 不经修改又寄给另一个杂志,这是一个很糟的错误。通常,审稿人做了很认真的工 作指出论文的问题,并建议了修改。如果作者忽视这些忠告,这是对时间和努力的 真正浪费。同时,寄一篇坏的文章,对于作者的科学声望是一种严重的损害。”实 际上,影响因子不同的学术刊物,接受论文的标准和要求差别很大。如果被拒绝的 论文不是由于文稿中的错误,而是重要性或创新性不够,作者在仔细考虑了审稿人 的意见,认真修改文稿后,是可以寄给影响因子较低的学术刊物的。值得注意的是 ,审稿人由于知识的限制和某种成见,甚至学术观点的不同,判断错误并建议退稿 是会发生的。如何处理情况,有两个例子供参考。最近一位年青人的论文被一杂志 拒绝。经过反复的讨论检验,我们判断审稿人是错误的。为了论文及时发表,我们 建议这位作者礼貌和认真地回信给主编 ,指出审稿人的错误,并要求主编将他的意见转给审稿人,然后撤回论文,再将论 文做必要改进,寄给另一影响因子更高的杂志。论文立即被接收,并得到很好的评 价。在这一例子中,论文并没有经过重要修改就改寄其他杂志。但是作者却负责地 请主编把对审稿人的意见转寄给审稿人。在这种情况下,作者改寄其他杂志是不应 受到限制和责难的。但前提是对论文结果的反复检验,对论文的正确性有了确切的 把握。笔者组内一篇论文在一重要杂志经过两年半才得以发表,主要的原因是第一 位审稿人对我国向量磁场测量的可靠性提出质疑,不同意发表这篇论文。通过向权 威的同事请教和反复的思考,我们确认对所进行的研究,所采用的测量,是充分准 确和可靠的。作者花了近两年的时间与审稿人讨论,不但论文得以发表,还与审稿 者和主编建立了良好的关系,这篇论文发表后得到了良好的国际引述。 花大力气提高英语写作水平 英语不是我们的母语,英语写作是英语学习中最困难的部分。我国SCI论文和引述偏 少,除了基础研究水平的限制,语言的障碍不容忽视。每一位基础研究工作者必须 把提高英语写作能力作为一个艰巨的任务。这里有三个成功的经验供参考。中国科 技大学的胡友秋教授总是把审稿人的英文修改和自己的原稿中被修改的部分单独抄 在本子上一一对照。细心琢磨并背下来,一点一滴地提高自己英语写作水平。他寄 往国际核心刊物的论文常被审稿人称为well-written。美国国家太阳天文台有一个 内部的审稿制度,其目的主要是保证论文的正确性,同时对研究也有 相互影响和砥砺的好处。不经过内部审稿的论文不能寄给杂志。资深太阳物理学家 Sara,Martin建议找一些可作为范例的论文精读,学习怎样组织和写出好英语。她 特别提到已故著名天体物理学家Zwaan的论文,可作为范文来效仿。论文初稿完成之 后,一定要做拼写检查,不出现简单的拼写出错。如果对自己的英文写作无把握, 请一位英文好的同事和国外同行把把英文关是必要的。为从根本上提高我国学者英 语水平,我们建议对研究生必须开设英语写作课程。在写英语上,我们实在需要打 个翻身仗。

综述宇宙学(或宇宙论) 译自英文之Cosmology,这个词源自于希腊文的κοσμολογ?α(cosmologia, κ?σμο? (cosmos) order + λογια (logia) discourse)。宇宙学是对宇宙整体的研究,并且延伸探讨至人类在宇宙中的地位。虽然宇宙学这个词是最近才有的,人们对宇宙的研究已经有很长的一段历史,牵涉到科学、哲学、esotericism以及宗教.宇宙学同样也可以诠释人生,只有当你建立起清晰的宇宙概念,才能理解世界的根本秩序,如果对天文学一无所知的话,就不能算受过完整的教育.在最近,物理学与天文物理学在目前所谓的物理宇宙学(藉由科学观察与实验 宇宙学来了解宇宙)的发展上扮演了核心的角色。这个学科专注在宇宙最为巨观且最早期的面向,一般被理解为由大爆炸起头,大爆炸指的是空间的膨胀,而宇宙被认为约於137亿年前由此膨胀产生。从宇宙剧烈的发生直至它的结束,科学家认为宇宙的整个历史是一个有秩序的、且在物理定律支配之下的进程。天体物理学天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。利用理论物理方法研究天体的物理性质和过程的一门学科。1859年﹐基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线﹐断言在太阳上存在著某些和地球上一样的化学元素﹐这表明﹐可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质﹐是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步﹐几乎理论物理学每一项重要突破﹐都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立﹐使深入分析恒星的光谱成为可能﹐并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展﹐使恒星能源的疑问获得满意的解决﹐从而使恒星内部结构理论迅速发展﹔并且依据赫罗图的实测结果﹐确立了恒星演化的科学理论。1917年爱因斯坦用广义相对论分析宇宙的结构﹐创立了相对论宇宙学。1929年哈勃发现了河外星系的谱线红移与距离间的关系﹐以后人们利用广义相对论的引力理论来分析有关河外天体的观测资料﹐探索大尺度上的物质结构和运动﹐这就形成了现代宇宙学。从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪老赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。天体物理学的发展,促使天文观测和研究不断出现新成果和新发现。1859年,基尔霍夫对太阳光谱的吸收线(即夫琅和费谱线)作出科学解释。他认为吸收线是光球所发出的连续光谱被太阳大气吸收而成的,这一发现推动了天文学家用分光镜研究恒星;1864年,哈根斯用高色散度的摄谱仪观测恒星,证认出某些元素的谱线,以后根据多普勒效应又测定了一些恒星的视向速度;1885年,皮克林首先使用物端棱镜拍摄光谱,进行光谱分类。通过对行星状星云和弥漫星云的研究,在仙女座星云中发现新星。这些发现使天体物理学不断向广度和深度发展。人类对宇宙的认识不断扩大,不仅使人们愈来愈深入地了解宇宙的结构和演化规律,同时也促使物理学在揭示微观世界的奥秘方面取得进展。氮元素就是首先在太阳上发现的,过了二十五年后才在地球上找到。热核聚变概念是在研究恒星能源时提出的。由于地面条件的限制,某些物理规律的验证只有通过宇宙这个“实验室”才能进行。六十年代天文学的四大发现——类星体、脉冲星、星际分子、微波背景辐射,促进了高能天体物理学、宇宙化学、天体生物学和天体演化学的发展,也向物理学、化学、生物学提出了新的课题。高能天体物理学 光子-结构模型图天体物理学的一个分支学科。主要任务是研究天体上发生的各种高能现象和高能 宇宙学过程。它涉及的面很广,既包括有高能粒子(或高能光子)参与的各种天文现象和物理过程,也包括有大量能量的产生和释放的天文现象和物理过程。最早,高能天体物理学主要限于宇宙线的探测和研究,真正作为一门学科是20世纪60年代后才建立起来的。60年代以后,各种新的探测手段应用到天文研究中,一大批新天体、新天象的发现,使高能天体物理学得到了迅速发展。高能天体物理学的研究对象包括类星体和活动星系核、脉冲星、超新星爆发、黑洞理论、X射线源、γ射线源、宇宙线、各种中微子过程和高能粒子过程等等。 中微子-结构模型图编辑本段研究领域综述以下所列的是宇宙学研究的一些最活跃的领域,大致按时间顺序排列。这个单子不包括大爆炸宇宙学。它可以参见宇宙时间表。极早期宇宙虽然大爆炸理论看起来可以解释从10~33秒钟开始的早期热宇宙,它却面 宇宙学临着许多困难。其中之一是现今的粒子物理理论不能为宇宙的平坦性、均匀型和各向齐性(参阅宇宙学原理)提供一个令人满意的答案。另外,大统一模型预言了宇宙中有磁单极,它们也没有被观察到。宇宙暴涨解决了这些问题。它的物理模型虽然很简单,但是却没有被粒子物理所证实,其主要困难在于如何调和它和量子场论的矛盾。一些宇宙学家认为弦理论和膜宇宙学能为解决宇宙学原理提供另一方案。 弦理论-结构模型图宇宙学的另一主要问题是解释为什么粒子要多于反粒子。X射线观测表明宇宙并不是由物质和反物质的区域组成的。它的主要组成是物质。这个问题称为重子不对称性,解释这种现象的理论被称为重子产生。重子产生理论是由萨哈罗夫于1967年提出的,它的必要条件中包括物质和反物质间的电荷——宇称对称性的破缺。粒子加速器只观测到很小的电荷——宇称对称破坏,不能解释宇宙的重子不对称性。宇宙学家和粒子物理学家希望能发现电荷——宇称破坏的其它来源。重子产生和宇宙暴涨都与粒子物理有密切的联系。这些问题的解决答案可能会产生于高能理论和实验而不是于天文观察中。大爆炸核合成过程 质子-结构模型图大爆炸核合成是关于元素在早期宇宙形成的理论。当宇宙演化到大约三分钟时,它已经足够冷却,这时核聚变及核合成过程就终止了。因为大爆炸核合成过程持续的时间极为短暂,从氢离子(质子)出发,它的主要合成成品是轻元素如氘、氦-4和锂。其它元素则极为微量。(重元素主要是由星体如超新星中的核反应而形成的。)虽然在1948年伽莫夫、阿尔菲和赫尔曼就已经提出了这个理论的基本观点,由于在此理论中轻元素的丰度与早期宇宙的物理性质关系密切,它至今仍然是检验大爆炸时期物理理论的极灵敏的探针。比如,它可以用来检验等效原理、暗物质和中微子物理。宇宙微波背景辐射宇宙微波背景辐射是指退偶过程(即大爆炸所产生的辐射停止与带电离子的汤普生散射及原子第一次形成这一过程)所残余的辐射。这种辐射是由彭齐亚斯和威尔逊在1965年发现的。它具有几乎完美的2.7K黑体辐射谱,只在十万分之一内偏离各向同性。宇宙学家们可以用描写早期宇宙细微起伏演化的宇宙学微扰理论来精确地计算辐射的角度功率谱。最近的卫星(COBE和WMAP)和地面及气球(DASI,CBI和Boomerang)实验也测量了此功率谱。这些工作的目的是为了更精确地测量Λ-冷暗物质模型的参数,同时也为了检验大爆炸模型和新物理模型的预言。例如,最近WMAP的测量就为中微子的质量提供了限制。更新的实验的目的则是测量微波背景谱的极化。它将为微扰理论提供更多的证据,也将为宇宙暴涨和所谓的次级非各向同性(如由背景辐射和星系和星系团相互作用引起的散亚耶夫-泽尔多维奇效应和萨克斯-沃尔夫效应)提供信息。大尺度结构的形成和演化理解最早和最大结构(如类星体,星系,星系团和超团)的形成和演 宇宙学化是宇宙学的核心课题之一。宇宙学家们研究的是一种由下至上有层次的结构形成模型。在此模型中,小物体先形成,而大的物体如超团还在形成过程中。研究宇宙中结构最直截了当的方法是普查可见的星系,从而构造一个星系的立体图像并测量物质功率谱。这就是斯隆数码天空普查和2dF星系红移普查的研究方案。理解结构形成的一个重要工具是模拟。宇宙学家们用它来研究宇宙中物质的引力堆积和线状结构,超团和空穴的形成。因为宇宙中冷暗物质要比可见的重子物质多许多,所以大多数模拟只计入它们。这种处理对理解最大尺度的宇宙是足够了。更先进的模拟已经开始计入重子的效应,它们也开始研究星系的形成。宇宙学家们检查这些模拟是否与星系普查的结果一致。如果不一致,则研究偏差的原因。宇宙学家还用其它互补的方法来测量宇宙遥远处的物质分布和重离子化过程。这些方法包括:*莱曼阿尔法谱线森林。通过测量气体对遥远类星体所发射光的吸收来测量早期宇宙中中性氢原子的分布。*中性氢原子的21厘米吸收线也提供了灵敏的测试。*由于暗物质的引力透镜效应而引起的对遥远物象的扭曲,即所谓的弱透镜效应。这些方法都将帮助宇宙学家解决第一颗类星体如何形成这一问题。暗物质大爆炸核形成、宇宙微波背景辐射和结构形成的研究证据表明了宇宙质量的25%是由非重子的暗物质组成的,而可见的重子物质只占宇宙质量的4%。作为星系周围晕环中的一种冷的、非辐射性的尘埃,暗物质的引力效应已经被了解得很透彻了,但是它的粒子物理性质还是个谜,人们从没有在实验室中观察到它们。暗物质的可能候选包括稳定的超对称粒子、弱作用重粒子(WIMP)、轴子和重的紧致空穴物体,它甚至还可能是在极小加速度下引力的修正(修正的牛顿动力学,或MOND)或瞙宇宙学的一种效应。星系中心的物理(如活跃星系核,超重黑洞)可能会给暗物质的性质提供线索。暗能量如果宇宙是平坦的,那么必须有一种东西组成71%的宇宙密度(扣除25%的暗物质和4%的重子物质)。它被称为暗能量。这种东西不能干涉大爆炸核合成和宇宙微波背景辐射,所以它不能象重子和暗物质那样在星系周围晕环中结团。因为宇宙是平坦的,所以我们知道它的总质量。通过观测我们也知道宇宙中结团物质的质量比总质量远远要小,这就为暗物质的存在提供了很强的证据。1999年发现的宇宙加速膨胀(类似宇宙早期的暴涨)为暗物质提供了更强的证据。除了暗物质的密度和结团性质外,我们对它一无所知。量子场论预言了一 宇宙学种类似暗物质但比它大120个数量级的宇宙常数。温伯格和一些弦理论家由此提出人类学原理。他们认为宇宙常数如此小的原因是因为人类不能在其他大宇宙常数的世界中生存。许多人觉得这种解释很牵强。暗能量其他可能的解释包括精粹物质(quintessence)和在大尺度下引力的修正。这些模型的核心是暗物质的状态方程,不同的理论有不同的状态方程。暗物质的本质是宇宙学中最具挑战性的问题之一。如果我们对暗物质有更好的理解,我们可能会解开宇宙最终结局这一谜题。在现在这个宇宙时期,由暗物质引起的宇宙加速膨胀阻碍了比超团更大结构的形成。我们还不清楚这种加速膨胀会不会永久持续下去。或许它会加快,甚至它也可能会变成减速膨胀。平行宇宙平行宇宙(Multiverse、Parallel universes),或者叫多重宇宙论,指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。婴儿宇宙宇宙不是无限的,而是有一个时间上的起点,在那个起点时间发生宇宙大爆炸,形成了现在的宇宙,迄今约137亿年,彷如人类发育的婴儿时期,故此得名婴儿宇宙。借助美国宇航局的微波背景辐射探测器,一个国际天文学家小组新获得了“婴儿期”宇宙迄今最精细的照片,为宇宙大爆炸理论提供了新的依据,根据这张照片,科学家“精确地测量出了宇宙的实际年龄大约是137亿年”。其它研究方向原初黑洞。宇宙射线谱中的格莱森-查策平-库兹明截断。对此截断的违反是否隐示了在极高能下狭义相对论的失效。等效原理。爱因斯坦引力理论是否正确,物理原理的普适性。

天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。

天体物理学专业培养符合国家建设需要,为祖国和人民服务的,具有良好道德品质和科学素质的,具有集体主义精神,实事求是,追求真理,献身科学教育事业的,具有宽厚和扎实基础知识和良好实验科研能力的天体专门人才和高等院校师资。

获得本专业硕士学位的研究生应掌握天体物理学科坚实、宽厚的基础知识 ,较全面和深入的专业知识,熟悉本专业研究方向的发展前沿和热点。硕士论文选题时,应对国内外研究现状进行较全面的调研和分析,在此基础上,完成具有创造性的研究成果。熟练掌握一门外语,包括专业阅读和写作,以及能用外语进行简单的学术交流。

补充资料:

1、天体物理学具体专攻包括。

行星天文学:以行星为研究目标,除了物理学外也要涉及大气科学、地质学和生物学的知识。

恒星天文学:研究恒星、星云和黑洞。

太阳天文学:专门深入研究太阳。

星系天文学:研究星系。

宇宙学:研究大尺度上的宇宙,及大爆炸之后的宇宙演化史。

天体测量学:研究天体运行的精确计算,预测日食或流星雨等现象,是天文学最古老的分支。

2、天体物理学专业的研究方向。

本专业分六个方向。方向一:引力效应,研究的内容为经典引力效应和量子引力效应;方向二:黑洞,研究的内容为黑洞可观测效应,黑洞演化和黑洞热力学;方向三:宇宙学。研究的内容为暴涨宇宙学和量子宇宙学;方向四:相对天体物理,研究的内容为致密天体引力性质;方向五:星系形成和演化,研究的内容为星系的形成,星系的演化;方向六:致密天体,研究的内容为白矮星和中子星。

  • 索引序列
  • 发表宇宙理论文章
  • 如何发表宇宙论文文章
  • 宇宙物理学论文发表
  • 宇宙论文发表
  • 宇宙物理学论文发表要求
  • 返回顶部