123老吃客
乙酸钾用于插层高岭土,插层速率较快,复合物的稳定性相对较高,且乙酸钾无毒,便于操作,易于工业化生产,因而,高岭土-乙酸钾复合物是最具有利用前景和最可能先实现工业化生产的复合物之一。因此,本节采用研磨法和浸泡法制备高岭土-乙酸钾插层复合物,讨论了插层时间、浓度、水量、温度以及高岭土-乙酸钾配比等因素对插层的影响,并对高岭土-乙酸钾插层复合物(Kao-KAc)进行了表征,对今后工业生产和科研具有重要的参考价值。
一、实验用主要原料
高岭土:萍乡硬质高岭土,≤200目。乙酸钾:分析纯,含量≥。无水乙醇:分析纯,含量≥。
二、制备Kao-KAc的工艺流程
分别采用了浸泡法、研磨法等不同的工艺,对高岭土样品的预处理、浓度、温度等作了较多的研究。总体来看,制备高岭土-乙酸钾的工艺流程为:高岭土样品的预处理→配料混合→反应→过滤与洗涤→烘干→试验产品。
对高岭土样品的预处理,以往的常用做法是分选出粒度<5μm的样品并进行钠饱和处理或150℃~200℃的烘干处理。本实验中,经过对几种方法进行的对比试验,发现钠饱和处理或150℃~200℃的烘干处理对插层反应速率影响不大,细磨到-200目的样品其插层效果也很好。因此,除个别试验外均采用200目筛下的样品直接配料。
反应物配料后,要充分搅拌使之混合均匀。
在反应过程中可用静置或搅拌、室温或加温等反应条件,以考察不同条件下的插层效果,最终选择出经济、实用、高效的插层方法。
过滤可采用离心沉淀、抽滤、滤纸过滤等方法,本论文所做实验大多数均用定量或定性滤纸过滤,因此除特别说明外,为滤纸过滤。
洗涤是制备插层复合物的关键步骤之一,洗涤的目的是为了除去高岭石表面吸附的多余的插层剂分子,其关键在于洗涤剂的选择。由于大多数有机插层复合物不稳定,洗涤剂选择不当,则不能除去多余的插层剂分子或使插层的分子脱嵌。以往的试验有很多采用风干或加温烘干的方法以除去多余的插层剂,往往残留插层剂较多,表征效果往往不甚理想。对高岭土-乙酸钾复合物来说,经试验用酒精洗涤效果很好,且酒精的回收和再利用在工业上也容易实现。
烘干的关键在于温度的控制,插层复合物在一定温度范围内稳定,超过某一温度将发生脱嵌。有一些复合物的稳定性极差,如水合肼以及脲插层的复合物,经风干或50℃以下烘干,将发生严重脱嵌。高岭石-乙酸钾复合物的稳定性较好,在100℃以下很稳定,超过150℃才有明显的脱嵌作用发生,因此该复合物的烘干操作比较容易,可用较高的温度快速烘干而得到样品。
三、制备Kao-KAc的方法
研磨法:高岭土和乙酸钾按不同比例混合均匀,温和研磨15min左右至黏稠状,加适量水搅拌均匀,静置一定时间后用酒精洗涤,滤干后在50℃下烘干24h。
浸泡法:用水作溶剂制备一定浓度的乙酸钾溶液,将高岭土样品置于其中,充分搅拌,使样品尽量分散混匀。放置一定时间后,加无水乙醇洗涤。过滤,将固体在60℃下干燥24h。
四、结果与讨论
1.插层工艺条件选择
(1)插层时间选择
高岭石是层状结构的硅酸盐,其层状晶体结构是由硅氧四面体片和铝氧八面体片沿c轴方向堆叠而成。高岭石层间插入有机分子后,层间距将增大。XRD的d001值可直接反映出这种变化。
乙酸钾插层高岭石后,高岭石的晶体c轴方向上的层间距d001从膨胀扩展到左右。可以根据高岭石插层前后d001衍射峰强度变化的比值(RI)来衡量插层反应进行的程度,即插层率:
RI=Ic/(Ic+Ik)
式中:Ic和Ik,分别表示插层复合物中膨胀高岭石的d001衍射峰强度和插层复合物中残留未膨胀高岭石的d001衍射峰强度。
1)研磨法:按高岭土,乙酸钾,混合均匀后研磨至黏稠状,分别放置不同的时间,用XRD法检测。插层不同时间复合物的XRD图谱见图3-1。
图3-1 研磨法反应不同时间插层复合物的XRD图谱
(a)高岭石原样;(b)天;(c)1天;(d)3天;(e)7天;(f)28天
根据衍射峰强度,计算出不同插层时间的插层率(RI)。由时间-插层率关系曲线图(图3-2)可知,随着放置时间的延长,初始阶段高岭土的插层率迅速增大,放置到一定时间后,插层率的变化开始变缓,并基本趋于稳定。插层时间以3d以上较好,3d以内插层率升高较快,超过3d以后插层率变化较慢,7d达到。时间太长,插层率反而有一定程度降低,如插层28d的插层率反而降到。
图3-2 研磨法插层时间-插层率曲线
2)浸泡法:高岭土3g,乙酸钾饱和溶液7ml,将高岭土分散于溶液中,搅拌10min后分别放置不同的时间。插层不同时间复合物的XRD图谱见图3-3。
图3-3 浸泡法反应不同时间插层复合物的XRD图谱
(a)高岭石原样;(b)1d;(c)4d;(d)10d;(e)25d;(f)38d
根据衍射峰强度,计算出插层率(RI),插层率随时间变化的关系见图3-4。可以看出,用乙酸钾溶液插层时间超过4d左右较为合适,随着浸泡时间的延长,高岭石的插层率不是升高,反而先快速降低,而后趋于一稳定值80%左右。这与以往文献报道的规律互为佐证。可见,为提高插层率仅依靠延长插层时间有其局限性。
图3-4 浸泡法插层时间-插层率曲线
(2)乙酸钾浓度的选择
有机物插层高岭土时存在着浓度阀值,为考察乙酸钾插层高岭土的合适浓度,根据乙酸钾在水中的溶解度(表3-1)配制了不同浓度的乙酸钾溶液。
表3-1 乙酸钾在水中的溶解度[1]
由于乙酸钾室温下在水中的溶解度约为,因此分别配制10%、20%、30%、40%、50%以及饱和乙酸钾溶液,插层时间为3d。XRD图谱见图3-5,浓度与插层率关系曲线图见图3-6。
图3-5 乙酸钾不同浓度插层的XRD图谱
(a)高岭土原样;(b)10%;(c)20%;(d)30%;(e)40%;(f)50%
图3-6 乙酸钾浓度-插层率曲线图
插层结果表明,乙酸钾插层高岭石存在最低浓度阀值,其值约为8%;乙酸钾浓度在50%以下插层效果不明显;乙酸钾浓度达到饱和时插层效果较好,与50%浓度溶液相比,插层率由增加到,插层速率较快。可见,用乙酸钾溶液浸泡高岭石插层时用饱和溶液为最优选择。研磨法只加入少量水或不加水利用乙酸钾的吸湿性使混合体呈浆状,其插层率较高的原因正是能够保证乙酸钾溶液能处于饱和状态所致。
(3)水量的选择
水在插层中起着关键的作用,没有水插层作用难以进行,少量的水对插层有利,大量的水则减缓了插层作用。水量少时乙酸钾为浆状,水多时为乙酸钾溶液,按水在乙酸钾和水中所占百分比考察水量与插层率的关系,不同水量的插层率见图3-7和表3-2。样品的制备方法为:高岭土3g,乙酸钾,混合均匀后研磨15min,分别加入不同的水量,搅拌均匀,静置3d。
图3-7 水量-插层率曲线图
表3-2 不同水量的插层率
由图上显示的规律可知,水量控制在5%~10%插层效果最好,10%~30%之间插层率变化不大,超过30%插层率快速降低。在水量为10%~30%时插层率基本不变的原因是由于水为30%时为乙酸钾饱和溶液,水量在此变化区间,混合物始终保持着乙酸钾饱和溶液状态;水量继续增加则为非饱和溶液,水对插层的不利作用则凸现出来,插层率随水量增加而急剧降低。同时也可看到,在乙酸钾溶液状态中,插层率最大可达84%;而在乙酸钾过量成浆状的混合液中,在适量水5%~10%的情况下,插层率可达90%左右,而且插层速度快。由此可见,为达到好的插层效果,至少应保证反应物始终处于乙酸钾饱和溶液状态。
(4)温度的选择
温度是影响反应速率的主要因素之一。在一定的范围内,加温可大幅度提高插层效率。乙酸钾饱和溶液在不同温度下插层8h的XRD见图3-8,温度与插层率的关系见图3-9。
图3-8 不同温度下插层的XRD图谱
(a)20℃;(b)60℃;(c)80℃;(d)100℃;(e)120℃
图3-9 插层温度-插层率关系曲线图
由图3-9可知,在室温至100℃的范围内,温度对插层率的影响较小,插层率的变化幅度不大,以60℃为较好条件。当插层温度超过100℃时插层率大幅度降低,这是由于乙酸钾在100℃以上时不稳定,会发生脱嵌作用。从经济效益和操作简便性看,以室温下插层为最优温度条件。
(5)高岭土与乙酸钾的配比试验
确定插层中乙酸钾合适的加入量是工业化生产的关键参数之一,乙酸钾的合适用量应是加入较少的乙酸钾达到较高的插层率和较快的插层速度。选取不同配比的高岭土和乙酸钾,研磨10min后加适量水至正好浆状,再研磨10min使之混匀。然后用XRD评价插层效果。乙酸钾不同加入量的插层效果见图3-10,不同比例与插层率的关系见图3-11。可以看出,高岭土和乙酸钾的配比不同,插层率也有较大变化。随着乙酸钾比例的升高,插层率也相应增高,插层率在乙酸钾加入量为高岭土重量的40%~60%之间发生突变,在加入量60%以下插层率较低;在乙酸钾加入量为60%之后插层率变化不大,插层率随乙酸钾含量增加略有提高,处于相对稳定状态。由以上分析可得到最佳的乙酸钾加入量为高岭土重量的60%。
图3-10 不同的乙酸钾-高岭土比例的插层XRD图谱
(a)4∶10;(b)6∶10;(c)8∶10;(d)10∶10;(e)15∶10
的红外光谱分析
高岭石、乙酸钾和高岭土-乙酸钾复合物的红外光谱的振动峰特征及其属性列于表3-3。
在高岭石晶体中,内羟基与内表面羟基的数量比为1∶3。由于两类羟基在晶格中所处的环境不同,在红外图谱中,它们所对应的位置也就不同。内表面羟基因为直接暴露于层间,易受层间环境变化的影响,在插层前后强度和位置有较大变化。而内羟基由于位于高岭土层状结构单元内部,受层间环境变化的影响比较小,在插层前后仅有微弱变化。
图3-12为高岭土和高岭土-乙酸钾插层复合物的羟基伸缩振动区的红外图谱。在图3-12中,高岭石在羟基振动区有4个峰。其中,3694、3667、3647cm-1吸收峰对应于内表面羟基的伸缩振动峰,3694cm-1为同相振动,后两个为异相振动。而3620cm-1则归属于内羟基的伸缩振动。
图3-11 乙酸钾和高岭土的不同比例与插层率曲线图
表3-3 高岭石、乙酸钾和高岭土-乙酸钾复合物的红外光谱
图3-12 高岭土和高岭土-乙酸钾复合物高频区的红外光谱
(a)高岭土原样;(b)高岭土-乙酸钾复合物
高岭石经插层后,在高岭土-乙酸钾插层复合物中,内表面羟基的同相伸缩振动峰(3693cm-1)与内羟基的伸缩振动峰(3620cm-1)的相对强度和位置与高岭土相应振动峰的强度和位置相比,发生了变化,特别是强度发生了明显变化。内表面羟基的两个异相振动峰在插层前后均很微弱。内表面羟基的3个振动峰插层后分别位移至3693、3668、3651cm-1,与内羟基的伸缩振动峰的位移相比,变化幅度较大。而内羟基的强度与位置基本无变化。红外分析还表明,复合物在3500~2500cm-1之间出现一个很宽的谱带,在3449cm-1之间存在一个水的OH振动峰,一般认为主要是水与乙酸钾一起插入高岭石层间,水含量增加所致。
图3-13为高岭土及高岭土-乙酸钾插层复合物中低频区的红外图谱。在中低频区,复合物的红外光谱中1032cm-1为Si-O伸缩振动峰,913cm-1为Al-OH的振动峰。792cm-1、753cm-1OH为平动振动峰,这些平动振动峰解释为羟基基团靠近或远离八面体层的运动。542cm-1为Si-O-Al的弯曲振动峰。471cm-1为骨架内Si-O-Al的弯曲振动峰。436cm-1为Si-O振动峰。在高岭土-乙酸钾插层复合物,新增加多个峰,在1583、1415cm-1处有2个强峰,1345cm-1处的振动峰则较弱。其中,1583cm-1处为CH3COO-的反对称伸缩振动峰,1415cm-1处为CH3COO-的对称伸缩振动峰。而1345cm-1处为C-O振动和O-H的面内变形的振动耦合的结果。这3个振动峰的存在以及前述3605cm-1处的内表面羟基与乙酸根的氢键(OH)振动峰说明复合物层间有乙酸根存在。
红外分析表明,乙酸钾已经插入高岭土层间,对高岭石的内表面羟基产生了显著影响,并可能与高岭石的内表面羟基形成了氢键。内羟基的微弱变化是由于乙酸钾分子中的H原子插入高岭石层间的复三方空洞后对内羟基引起的扰动所造成。插层复合物中水的HOH变形转动峰说明水可能以不同形式存在,可能有吸附水、与硅氧面或与内羟基面形成氢键的插层水,插层物中水的存在形式需要借助其他测试如差热等详细分析才能辨别。
的稳定性
(1)Kao-KAc在不同介质中的稳定性
对同一样品分别用水、乙醇、乙醇与水的混合液洗涤样品,用XRD检测淋洗效果,不同洗涤液洗涤后的插层率见表3-4。
图3-13 高岭土和高岭土-乙酸钾复合物中低频区的红外光谱
(a)高岭土原样;(b)高岭土-乙酸钾复合物
表3-4 插层复合物在不同介质中的稳定性
由此可看出,高岭土-乙酸钾插层复合物在无水乙醇中非常稳定。而水的存在,则会使插层复合物遭到破坏,甚至彻底分解。
(2)Kao-KAc的热稳定性
乙酸钾的热分析(图3-14)表明,60℃左右的吸热峰为乙酸钾的晶化,其后至200℃以下的吸热峰伴随失重属于脱水作用,290℃的吸热峰则是由于乙酸钾的熔化引起,436~517℃之间的强放热峰伴随着失重为乙酸钾的燃烧[3]。
图3-14 乙酸钾的热分析曲线[3]
高岭土-乙酸钾插层复合物的热分析(图3-15)表明,高岭土-乙酸钾插层复合物200℃以下的曲线与乙酸钾的相类似,但乙酸钾的晶化温度稍高。℃的吸热峰为乙酸钾的熔化。从℃~550℃之间曲线较为复杂,高岭石脱羟基的吸热反应和乙酸钾燃烧的放热反应叠加在一起,强烈的脱羟基作用发生在℃,比高岭土原样强烈脱羟基的温度(℃)低约130℃。由热分析可看出,高岭土-乙酸钾复合物在67℃以下基本稳定,结构不变。℃发生脱水后结构有变化,将形成不同相的高岭土-乙酸钾复合物。到℃之后乙酸钾熔化将发生脱嵌。因此,高岭土-乙酸钾插层复合物若要保持结构和性质不变,应在60℃以下环境存放。
图3-15 高岭土-乙酸钾复合物的热分析曲线
的形貌特征
Kao-KAc的扫描电镜照片(图3-16、图3-17)显示,经乙酸钾插层后,复合物的形貌与高岭石原样相比变化不大,但片层结构明显,并且薄片状高岭石的数量增加,说明插层时有相当一部分片状高岭石从大颗粒上剥离。
图3-16 Kao-KAc的扫描电镜照片
图3-17 Kao-KAc的扫描电镜照片
的分子结构
根据高岭土-乙酸钾插层复合物层间距约为以及红外光谱分析结果,乙酸根在高岭石层间的结构如图3-18所示,水参加了插层,乙酸根与水分子形成氢键,而后通过水分子中的氧原子与内表面羟基形成氢键。
图3-18 高岭石层间乙酸钾-水分子结构模型
综合以上分析,将乙酸钾插入高岭石层间,插层率可高达90%左右。要得到好的插层效果,乙酸钾加入量至少要保证反应混合物中为乙酸钾饱和溶液,乙酸钾过量的浆状体可获得较高插层率,可达90%以上。少量的水对插层有利,水以5%~10%为最优条件;过量的水使插层率降低,大量水的存在会破坏高岭土-乙酸钾插层复合物,插层剂存在插层最低浓度阀值。红外光谱分析显示,乙酸钾插入高岭石层间,并与高岭石内表面羟基形成氢键,水有可能以吸附或插层水的形式存在于复合物中。
SevenLikeSmile
有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。
实验步骤: ①在一个大试管里注入乙醇2mL,再慢慢加入0.5mL浓硫酸、2mL乙酸,连接好制备乙酸乙酯的装置。 ②用小火加热试管里的混合物。把产生的蒸气经导管通
《光谱学与光谱分析》(Spectroscopy and Spectral Analysis)系中国科学技术协会主管,中国光学学会主办,由钢铁研究总院、中国科学院
乙酸钾用于插层高岭土,插层速率较快,复合物的稳定性相对较高,且乙酸钾无毒,便于操作,易于工业化生产,因而,高岭土-乙酸钾复合物是最具有利用前景和最可能先实现工业
去你图书馆看看,很多。
原理是利用反应过程中产生的羟基自由基。氧化废水中的有机物,将大分子断链为小分子,同时降解对碳酸亚乙烯酯废水中的难降解有机物。碳酸亚乙烯酯(VinyleneCar