欢迎来到学术参考网

纳米电子器件与技术

发布时间:2016-06-14 09:33

  纳米电子技术是指在纳米尺寸级别内构建纳米和电子器件,进而完成量子计算机和量子通信系统之间的信息计算及传导与处理的相关技术。纳米电子技术正处于高速发展时期,其最终目标是为了利用最前沿的物理理论和工艺手段,打破原有的大小尺寸及技术极限,依照全新的设计理念制造纳米电子器件,构建电子系统,使得该系统的信息存储和处理能力走上新的台阶,实现革命性的突破。

 

  引言

 

  根据摩尔定律,当价格恒定时,集成电路上的元器件数目,每经过1824个月便会增加一倍,性能也会提升一倍。但是在未来的几十年内,在继续提高计算器的运算能力和存储能力等方面将面临严峻的挑战,这其中既有技术性的工艺限制,也有原理性的理论限制。主要有:(1)当电子器件的大小尺寸处于微米级别时,电子主要表现为粒子性,而当大小尺寸为纳米级别时,电子主要表现的却是波动性,此时的电子器件将在完全不同的原理下工作;(2)当器件尺寸减小到纳米级别时,该系统产生的热起伏将会限制电子器件的性能,致使其无法正常运行。

 

  纳米电子技术和电子器件的出现及发展有望打破这种困局,同时也为微电子技术的发展提供了新的思路和转机。本文将阐述纳米电子技术和纳米电子器件的分类及指出在纳米电子领域中所面临的和亟待解决的问题。

 

  1 纳米电子技术与纳米电子器件

 

  纳米电子技术是指在纳米尺寸级别内构建纳米和电子器件,进而完成量子计算机和量子通信系统之间的信息计算及传导与处理的相关技术,纳米电子技术发展的核心是纳米电子器件。纳米电子技术正处于高速发展时期,其最终目标是为了利用最前沿的物理理论和工艺手段,打破原有的大小尺寸及技术极限,依照全新的设计理念制造纳米电子器件,构建电子系统,使得该系统的信息存储和处理能力走上新的台阶,实现革命性的突破。

 

  纳米电子器件指使用纳米级别的加工和制造技术(如光刻工艺、外延、细微加工、自组装生长和分子合成技术等),设计并制备而成的具有纳米级别的尺度和某些特定性能的电子器件。当前人们通过纳米电子材料和纳米光刻技术,已设计出多种纳米电子器件,例如电子共振隧穿器件、金属基、单电子晶体管、半导体、单电子静电计存储器及逻辑电路、金属基单电子晶体管存储器、通过硅纳米晶体制造的存储器、聚合体电子器件、纳米硅微晶薄膜器件和纳米级浮栅存储器等

 

  2 纳米电子器件的分类

 纳米电子器件与技术

  国内外对纳米电子器件分类有着不同的看法。根据目前纳米电子技术的发展和对未来发展前景的估测,有一种看法将纳米电子器件从广义分成8类:(1)纳米CMOS混合电路,有纳米CMOS电路及半导体共振隧道效应混合电路,单电子纳米开关电路和纳米CMOS电路,还有碳纳米管电路和纳米CMOS电路,人造原子电路和纳米CMOS电路,DNA电路和纳米CMOS电路;(2)纳米存储器,例如隧道型静态随机存储器、单电子存储器、超高容量纳米存储器和单电子量子存储器等;(3)纳米集成电路,有纳米光电电路及纳米电子集成电路;(4)纳米传感器,例如量子级别的隧道传感器;(5)单分子器件,例如单电子开关、分子线、电化学分子电子器件、单原子点接触器件、量子效应分子电子器件等;(6)单电子器件,例如电容耦合和电阻耦合单电子晶体管、单电子泵、单电子箱、单电子陷阱、单电子泵和单电子结阵列等等;(7)量子效应器件,例如量子点器件、谐振隧道器件和量子干涉器件等等;(8)纳米级别的CMOS器件,例如异质结MOSFET、双极MOSFET、绝缘层上硅MOSFET、和低温MOSFET等等。以上分类中,纳米传感器、存储器、纳米集成电路、纳米级CMOS器件和纳米CMOS混合型电路等均作为一种完全独立的器件类型。但是否应该将这些纳米级别的CMOS器件、传感器或者纳米集成电路纳入纳米器件的范畴,当前还未有定论。

 

  3 纳米结构制备和加工技术

 

  无论是研究纳米电子技术,还是制作纳米电子器件都是非常复杂的。本文仅对纳米电子器件的制备进行简单的探索,提供一些思路和建议。

 

  3.1 光刻技术

 

  电子束光刻、光学光刻与离子束光刻统称为三束光刻技术,机理是通过曝光掩模、刻线等物理化学工艺将设计的器件图形结构传递到介质或单晶表面上,形成功能图形的加工技术。目前,随着光刻技术线宽的不断缩减,电子束光、刻光学光刻与离子束光刻等技术已在纳米CMOS器件、纳米CMOS混合集成电路、纳米集成电路等加工领域去的较好应用效果,并逐渐在纳米电子器件加工方面获得了应用。

 

  3.2 外延技术

 

  原子层外延、分子束外延金属、有机化学汽相淀积与化学束外延技术统称为外延技术,是一种在基体上生长纳米薄膜的纳米制造技术,可用于纳米集成电路上的硅基半导体材料和纳米半导体结构,均用于器件的加工与制备。

 

  3.3 分子自组装合成技术

 

  自组装是依靠分子间非共价键力自发将无序状态结合成稳定的聚集体的过程,可以发生在不同的尺度上。自从80年代有人提出分子器件的概念至今,人们已从当年的LB技术发展到了如今的分子自组装技术,同时从双液态隔膜技术发展到了SBLM技术,现已在加工具有特定功能的分子聚集体、分子组装有序分子薄膜等方面取得了丰硕的成果。目前,国际上已开始研究超分子自组装合成技术。

 

  3.4 SPM技术

 

  自从1982年第一台扫描隧道显微镜(STM)诞生,以及后来各种扫描探针显微镜发明以来,人类对微观纳米世界的认识翻开了新的一页。现今的扫描探针显微镜(SPM)的横向分辨率可达0.1nm,纵向分辨率可达0.01nm,不仅可以进行观测高分辨率的三维成像,还可对材料表面结构的不同性质进行研究。因此,这已不仅是一种简单的微观测量和分析的工具,更是一种非常重要的微观操纵与加工工具。

 

  3.5 特种超微细加工技术

 

  还有另外一些特殊的超微细加工技术,可用于制备和加工纳米电子器件:包括纳米碳管构建FET;通过机械控制裂隙连接电极技术制备Au原子线;以介孔材料、纳米碳管、DNA分子为模板,电火花加工、制备量子线、电化学加工及超精密复合加工、电解射流加工等技术等。

 

  4 展望

 

  纳米技术目前的发展现状是非常可观的,具有一定的社会意义。其作为一项具有应用性、高性能和巨大潜力的科技成果,在一定程度上对人们的生活起到重要的作用。纳米电子技术是以许多现代自然科学技术为基础的科学,研究涉及混沌物理、量子力学、基础化学、分子生物学等现代科学和计算机技术、核分析技术、扫描隧道显微镜技术和微电子等多种现代技术,并与机械学、生物学、认知科学等学科相互融合,这种融合发展必然会引发各行业各领域的科学技术发展,对于人类而言,不仅可以改善生存环境,提高生活水平,并且还将从根本上造福全人类。

 

  作者:欧方明 来源:中国科技博览 20162

上一篇:浅谈石墨烯在电子器件中的应用

下一篇:喷墨打印技术的研究及其在电子器件产品中的应